如何准确判断集成电路IC是否正常工作

发布时间:2022-08-03 17:00
作者:Ameya360
来源:网络
阅读量:2775

  如何准确判断电路中集成电路IC的是否工作,是好是坏是修理电视、音响、录像设备的一个重要内容,判断不准,往往花大力气换上新集成电路而故障依然存在,所以要对集成电路作出正确判断。

如何准确判断集成电路IC是否正常工作

  分为以下的情况:

  1、直流工作电压测量法:主要是测出各引脚对地的直流工作电压值;然后与标称值相比较,依此来判断集成电路的好坏。用电压测量法来判断集成电路的好坏是检修中最常采用的方法之一,但要注意区别非故障性的电压误差。测量集成电路各引脚的直流工作电压时,如遇到个别引脚的电压与原理图或维修技术资料中所标电压值不符,不要急于断定集成电路已损坏,应该先排除以下几个因素后再确定。

  1)所提供的标称电压是否可靠,因为有一些说明书,原理图等资料上所标的数值与实际电压有较大差别,有时甚至是错误的。此时,应多找一些有关资料进行对照,必要时分析内部原理图与外围电路再进行理论上的计算或估算来证明电压是否有误。

  2)要区别所提供的标称电压的性质,其电压是属哪种工作状态的电压。因为集成块的个别引脚随着注入信号的不同而明显变化,所以此时可改变波段或录放开关的位置,再观察电压是否正常。如后者为正常,则说明标称电压属某种工作电压,而这工作电压又是指在某一特定的条件下而言,即测试的工作状态不同,所测电压也不一样。

  3)要注意由于外围电路可变元件引起的引脚电压变化。当测量出的电压与标称电压不符时可能因为个别引脚或与该引脚相关的外围电路,连接的是一个阻值可变的电位器或者是开关(如音量电位器、亮度、对比度、录像、快进、快倒、录放开关、音频调幅开关等)。这些电位器和开关所处的位置不同,引脚电压会有明显不同,所以当出现某一引脚电压不符时,要考虑引脚或与该引脚相关联的电位器和开关的位置变化,可旋动或拔动开头看引脚电压能否在标称值附近。

  4)要防止由于测量造成的误差。由于万用表表头内阻不同或不同直流电压档会造成误差。一般原理上所标的直流电压都以测试仪表的内阻大于20KΩ/V进行测试的。内阻小于20KΩ/V的万用表进行测试时,将会使被测结果低于原来所标的电压。另外,还应注意不同电压档上所测的电压会有差别,尤其用大量程档,读数偏差影响更显着。

  5)当测得某一引脚电压与正常值不符时,应根据该引脚电压对IC正常工作有无重要影响以及其他引脚电压的相应变化进行分析,才能判断IC的好坏。

  6) 若IC各引脚电压正常,则一般认为IC正常;若IC部分引脚电压异常,则应从偏离正常值最大处入手,进口泵检查外围元件有无故障,若无故障,则IC很可能损坏。

  7)对于动态接收装置,如电视机,在有无信号时,IC各引脚电压是不同的。如发现引脚电压不该变化的反而变化大,该随信号大小和可调元件不同位置而变化的反而不变化,就可确定IC损坏。

  8)对于多种工作方式的装置,如录像机,在不同工作方式下,IC各引脚电压也是不同的。

  以上几点就是在电路中IC没有故障的情况下,由于某种原因而使所测结果与标称值不同,所以总的来说,在进行集成块直流电压或直流电阻测试时要规定一个测试条件,尤其是要作为实测经验数据记录时更要注意这一点。通常把各电位器旋到机械中间位置,信号源采用一定场强下的标准信号,当然,如能再记录各功能开关位置,那就更有代表性。如果排除以上几个因素后,所测的个别引脚电压还是不符标称值时,需进一步分析原因,但不外乎两种可能。一是集成电路本身故障引起;二是集成块外围电路造成。分辨出这两种故障源,也是修理集成电路家电设备的关键。


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
建设规模42.5亿元,8大集成电路项目签约重庆!
  7月28日,重庆高新区集中签约8个集成电路重点项目,项目总建设规模42.5亿元。  据了解,此次签约项目聚焦车规级芯片、功率半导体等方向,包含华润封测扩能项目、东微电子半导体设备西南总部项目、芯耀辉半导体国产先进工艺IP研发中心项目、斯达半导体IPM模块制造项目、芯联芯集成电路公共设计服务平台项目、积分半导体封测项目、锐芯半导体芯片设计及检测总部项目、米特科技硅光集成芯片光纤陀螺项目。  其中,东微电子半导体设备西南总部项目由河南东微电子材料有限公司打造,计划投资15亿元,分两期建设:一期建设西部半导体设备生产基地与先进存储芯片研究院;二期扩产并建设射频芯片生产线。项目拟于2025年开工建设,2026年投产,当年实现年产值2亿元,到2029年实现年产值12亿元。  斯达半导体从事以绝缘栅双极型晶体管(IGBT)为主的功率半导体芯片和模块的设计研发、生产及销售。2023年,斯达半导体与深蓝汽车共同出资成立重庆安达半导体,落地科学城高新区,专注于车规级IGBT和碳化硅模块的研发、生产与销售。此次签约,斯达半导体将继续加大在重庆的投入,拟投资3亿元,设立斯达半导体(重庆)有限公司,使用约35亩工业用地,建设IPM(智能功率模块)产线。项目拟于2026年开工,2028年投产。  重庆米特科技有限公司成立于2019年,是一家以光电子技术及智能制造为核心的高新技术企业,专注于光纤陀螺光路模块装配及核心器件的研制生产。米特科技此次计划新增投资5亿元,分两期实施,高标准建设硅光集成芯片光纤陀螺模组生产基地,预计年产能达20余万片;建设国内首条基于薄膜铌酸锂集成化光纤陀螺用光学模组封装测试线;打造国内首个硅光集成光纤陀螺核心器件光纤环全自动生产车间;建成硅光电子光纤陀螺模组高端工艺研发平台。项目拟于2025年投产。  重庆集成电路重点企业超50家  目前,重庆集成电路产业已初步形成“芯片设计—晶圆制造—封装测试—原材料配套”全链条,有力配套了本地汽车电子、工业以及消费电子等终端需求。  近年来,科学城高新区将集成电路作为3个千亿级主导产业之一,集中资源力量,推动集成电路产业高质量发展态势向上向好。截至目前,科学城高新区已集聚SK海力士、电科芯片、华润微电子等集成电路产业链上下游重点企业50余家。  数据显示,2024年,科学城高新区集成电路规上工业产值增长6.8%、规模占全市的42.5%,集成电路工业投资增长78.6%。2025年一季度,该区集成电路规上工业产值增长6.9%,集成电路工业投资增长38.9%。  尽管发展态势良好,但当前重庆集成电路产业发展仍面临设计、封测模组等产业链“两端”短板。科学城高新区作为全市集成电路产业主要集聚地,正在锚定车规级芯片、功率半导体等重点发力产业,全力推动集成电路产业做大做强。  按照目标,预计到2027年底,科学城高新区将实现IC设计企业新增82家,年营业收入达100亿元;封测模组企业新增22家,年产值达200亿元,努力建设具有重庆辨识度、全国影响力的集成电路产业集群,有力支撑我市建设国家重要先进制造业中心。  重庆高新区促进集成电路产业高质量发展的若干措施  今年4月,科学城高新区起草并审议出台《重庆高新区促进集成电路产业高质量发展的若干措施》,针对设计、封测模组等企业的研发、融资、产业链协同等,出台19条措施给予精准支持。  例如,对设计企业流片最高奖励3000万元,购买EDA工具、IP最高奖励500万元;鼓励企业投入,最高奖励5000万元;鼓励企业融资,最高奖励3000万元;鼓励企业做大做强,最高奖励1500万元;针对场地保障,最高奖励1000万元。  此外,《措施》还鼓励供应链协同,最高奖励1000万元;鼓励企业招引行业高端人才及团队,最高奖励500万元;鼓励企业举办行业活动,最高奖励600万元。
2025-07-30 13:54 阅读量:253
2025(集成电路)中国独角兽榜单发布!
上海:对集成电路等重点产业链,给予最高产业政策支持!
  近日,上海市投资促进工作领导小组办公室印发 《关于强服务优环境 进一步打响“投资上海”品牌的若干举措》的通知(以下简称”《通知》”)。其中提出,要加快培育重点产业链,对集成电路、大飞机、船舶海洋、信创产业等重点产业链实施联合体支持政策。  为全面打响“投资上海”品牌,打造全球投资“首选地”,《通知》从政策资源高效对接、项目落地个性化支持、项目推进全方位服务及营造市场化招商氛围四个方面提出了13项具体措施。  例如上海将加强金融资源高效供给。《通知》提出,建立国资并购基金矩阵,设立总规模500亿元产业转型升级二期基金,用好1000亿元三大先导产业母基金,加大对重点产业战略性项目和产业链核心关键环节投资力度。通过“长期资本+并购整合+资源协同”创新机制,用好并购基金,加大对本市战略性新兴产业的金融供给。  同时发布重大应用场景。发布AI大模型、具身智能、自动驾驶、低空经济等重点应用场景,推动重大应用场景优先向重点企业、重点项目倾斜。将优质垂类大模型项目纳入全市公共算力调度体系,对模型推理算力项目实施补贴。  支持产业链联合体项目。加快培育重点产业链,对集成电路、大飞机、船舶海洋、信创产业等重点产业链实施联合体支持政策。支持优质企业以链强链,对于优质项目给予最高产业政策支持,支持产业链上下游重点领域和核心环节项目打包同步落地。  强化区域资源要素保障。优化产业空间布局,突出区域主导产业发展,鼓励各区围绕主导产业以及细分赛道招商。提升特色产业园区招商服务能级,搭建高质量区域公共服务平台。推动服务资源和支持政策向重点区域集聚,鼓励优质产业项目向特色产业园区、产业功能区集聚落地。  众所周知,上海是中国集成电路产业发展重镇,集聚了中芯国际、华虹宏力、盛美半导体、安集微电子、上海新阳、紫光展锐、天岳先进、澜起科技、积塔半导体、豪威集团(原韦尔股份)等知名企业,涵盖IC设计、制造、设备、材料等关键环节,已形成集成电路全产业链优势。  2024年7月,上海发布总规模1000亿元的三大先导产业母基金,重点支持集成电路、生物医药和人工智能等产业的发展。目前,上海三大先导产业母基金已有2批子基金落地,其中集成电路领域5只,包括聚源先导集成电路投资基金(上海)合伙企业(有限合伙)(拟)、元禾璞华集成电路产业基金(有限合伙)(拟)、上海新微慧芯创业投资合伙企业(有限合伙)(拟)、尚颀旗舰二期基金(有限合伙)(拟)和上海先导国策兴融芯私募投资基金合伙企业(有限合伙)(拟)。  特色产业园是上海发展集成电路产业的重要载体之一,目前,上海已经设立了张江集成电路设计产业园、临港东方芯港、以及浦江创芯之城等特色产业园。  其中,张江集成电路设计产业园是上海市首批特色产业园区,已形成涵盖设计、制造、封测等完整产业链的千亿级产业集群,集聚全球芯片设计十强企业及国内龙头企业,目标打造世界先进水平的集成电路园区;  东方芯港是临港新片区重点建设的集成电路产业特色园区,定位为世界级集成电路综合性产业基地。园区以半导体制造为核心,涵盖芯片设计、装备材料、封装测试等全产业链环节。根据2021-2025年专项规划,其目标到2025年形成千亿级产业集群;  浦江创芯之城则是上海市闵行区临港浦江国际科技城的核心功能区之一,定位为国内一流的集成电路创新研发与总部基地,聚焦集成电路设计、人工智能、数据中心等新一代信息技术产业,已形成头部企业集聚态势。
2025-07-03 13:55 阅读量:647
高温IC设计必懂基础知识:高结温带来的5大挑战
  随着技术的飞速发展,商业、工业及汽车等领域对耐高温集成电路(IC)的需求持续攀升‌。高温环境会严重制约集成电路的性能、可靠性和安全性,亟需通过创新技术手段攻克相关技术难题‌。  这份白皮书致力于探讨高温对集成电路的影响,并提供适用于高功率的设计技术以应对这些挑战。第一篇文章介绍了工作温度,包括环境温度和结温等。本文将继续介绍高结温带来的挑战。  高结温带来的挑战  半导体器件在较高温度下工作会降低电路性能,缩短使用寿命。对于硅基半导体而言,晶体管参数会随着温度的升高而下降,由于本征载流子密度的影响,最高极限会低于 300℃。依靠选择性掺杂的器件可能会失效或性能不佳。  影响 IC 在高温下工作的主要技术挑战包括:  泄漏电流增加  MOS 晶体管阈值电压降低  载流子迁移率降低  提高闩锁效应(Latch-Up)敏感性  加速损耗机制  对封装和接合可靠性的挑战  要设计出能够在高温下工作的 IC,了解高温下面临的挑战至关重要。下文将探讨 IC 设计面临的挑战。  1.泄漏电流增加  CMOS 电路中泄漏电流的增加主要是由半导体 PN 结泄漏和亚阈值沟道泄漏的增加引起的。  ▷反向偏置 PN 结泄漏  在较高温度下,半导体中热能的增加会导致更多电子 - 空穴对的产生,从而产生更高的泄露电流。结泄漏取决于掺杂水平,通常随温度呈指数增长。根据广泛使用的经验法则,温度每升高 10℃,结电流大约增加一倍。  二极管的泄漏电流由漂移电流和扩散电流组成:  其中, q 为电子的基本电荷, Aj 为结面积,ni 为本征载流子浓度,W 为耗尽区宽度,τ 为有效少数载流子寿命,L 为扩散长度,N 为中性区掺杂密度。  在中等温度下,泄漏电流主要由耗尽区中电子 - 空穴对产生的热引起。在高温下,泄漏电流主要由中性区产生的少数载流子引起。漂移电流与耗尽区宽度成正比,这意味着它与结电压的平方根成正比(在正常反向电压下),而扩散电流与结电压无关,并且与掺杂密度 N 成反比。掺杂水平越高,在温度高于约 150°C 时扩散泄漏越少。  泄漏电流的指数增加影响了大多数主动器件(如双极晶体管、MOS 晶体管、二极管)和一些被动器件(如扩散电容、电阻)。然而,由氧化物隔离的器件,例如多晶硅电阻、多晶硅二极管、ploy-poly 电容和 metal-metal 电容,并不受结泄漏的影响。结泄漏被认为是高温 bulk CMOS 电路中最严峻的挑战。  ▷亚阈值沟道泄漏  MOS 晶体管关闭时,栅极 - 源极电压 VGS 通常设置为零。由于漏极至源极电压 VDS 非零,因此漏极和源极之间会有小电流流过。当 Vgs 低于阈值电压 Vt 时,即在亚阈值或弱反型区,就会发生亚阈值泄漏。该区域的漏极源极电流并不为零,而是与 Vgs 呈指数关系,主要原因是少数载流子的扩散。  该电流在很大程度上取决于温度、工艺、晶体管尺寸和类型。短沟道晶体管的电流会增大,阈值电压较高的晶体管的电流会减小。亚阈值斜率因子 S 描述了晶体管从关断(低电流)切换到导通(高电流)的有效程度,定义为使漏极电流变化十倍所需改变的 VGS 的变化量:  其中,n 是亚阈值斜率系数(通常约为 1.5)。对于 n = 1,斜率因子为 60mV/10 倍,这意味着每低于阈值电压 Vt 60mV,漏极电流就会减少十倍。典型的 n = 1.5 意味着电流下降速度较慢,为 90mV/10 倍。为了能够有效地关闭 MOS 晶体管并减少亚阈值泄漏,栅极电压必须降到足够低于阈值电压的水平。  ▷栅极氧化层隧穿泄露  对于极薄的栅极氧化层(厚度低于约 3 纳米),必须考虑隧穿泄漏电流的影响。这种电流与温度有关,由多种机制引发。Fowler-Nordheim 遂穿是在高电场作用下,电子通过氧化层形成的三角形势垒时产生。随着有效势垒高度降低,隧道电流随温度升高而增大。较高的温度也会增强 trap-assisted 隧穿现象,即电子借助氧化层中的中间陷阱态通过。对于超薄氧化层,直接隧穿变得显著,由于电子热能的增加,隧穿概率也随之上升。  2.阈值电压降低  MOS 晶体管的阈值电压 Vt 与温度密切相关,通常随着温度的升高而线性降低。这是由于本征载流子浓度增加、半导体禁带变窄、半导体 - 氧化物界面的表面电位的变化以及载流子迁移率降低等因素造成的。温度升高导致的阈值电压降低会引起亚阈值漏电流呈指数增长。  3.载流子迁移率下降  载流子迁移率直接影响 MOS 晶体管的性能,其受晶格散射与杂质散射的影响。温度升高时,晶格振动(声子)加剧,导致电荷载流子的散射更加频繁,迁移率随之下降。此外,高温还会增加本征载流子浓度,引发更多的载流子 - 载流子散射,进一步降低迁移率。当温度从 25°C 升高到 200°C 时,载流子迁移率大约会减半。  载流子迁移率显著影响多个关键的 MOS 参数。载流子迁移率的下降会降低驱动电流,减少晶体管的开关速度和整体性能。更高的导通电阻会增加功率损耗并降低效率。较低的迁移率还会降低跨导,使亚阈值斜率变缓(增加亚阈值泄漏),降低载流子饱和速度(对于短沟道器件至关重要),并间接影响阈值电压。  4.提高闩锁效应敏感性  集成电路中各个二极管、晶体管和其他元件之间的隔离是通过反向偏置 P-N 结来实现的。在电路开发过程中,需采取预防措施以确保这些结在预期应用条件下始终可靠阻断。这些 P-N 结与其他相邻结形成 N-P-N 和 P-N-P 结构,从而产生寄生 NPN 或 PNP 晶体管,这些晶体管可能会被意外激活。  当寄生 PNP 和 NPN 双极晶体管相互作用,在电源轨和接地之间形成低阻抗路径时,CMOS IC 中就会出现闩锁效应(Latch-up)。这会形成一个具有正反馈的可控硅整流器(SCR),导致过大的电流流动,并可能造成永久性器件损坏。图 1 显示了标准 CMOS 逆变器的布局截面图。图中还包含寄生 NPN 和 PNP 晶体管。正常工作时,所有结均为反向偏置。图 1. 带标记的寄生双极晶体管逆变器截面图和寄生双极晶体管示意图  闩锁效应的激活主要取决于寄生 NPN 和 PNP 晶体管的 β 值,以及 N - 阱、P - 阱和衬底电阻。随着温度的升高,双极晶体管的直流电流增益(β)以及阱和衬底的电阻也会增加。  在高温条件下,闩锁效应灵敏度的增加也可以视为双极结型晶体管(BJT)阈值电压的降低,从而更容易在阱和衬底电阻上产生足以激活寄生双极晶体管的压降。基极 - 发射极电压随温度变化降低的幅度约为 -2mV/℃,当温度从 25℃升至 200℃时,基极 - 发射极电压降低 350mV。室温下的典型阈值电压为 0.7V,这意味着阈值电压大约减半。  5.加速损耗机制  Arrhenius 定律在可靠性工程中被广泛用于模拟温度对材料和元器件失效率的影响。  其中,R( T) 是速率常数,Ea 是活化能,k 是玻尔兹曼常数(8.617 · 10−5eV/K),T 为绝对温度(单位:开尔文)。通常,每升高10°C可靠性就会降低一半。  ▷经时击穿-TDDB  TDDB 是电子器件中的一种失效机制,其中介电材料(例如 MOS 晶体管中的栅氧化层)由于长时间暴露于电场下而随时间退化,导致泄漏电流增加。当电压促使高能电子流动时,在氧化层内部形成导电路径,同时产生陷阱和缺陷。当这些导电路径在氧化层中造成短路时,介电层就会失效。失效时间 TF 随着温度的升高而呈指数级减少。  ▷负 / 正偏置温度不稳定性 - NBTI / PBTI  NBTI 影响以负栅极 - 源极电压工作的 p 沟道 MOS 器件,而 PBTI 则影响处于积累区的 NMOS 晶体管。在栅极偏压下,缺陷和陷阱会增加,导致阈值电压升高,漏极电流和跨导减少。这种退化显示出对数时间依赖性和指数温度上升,在高于 125°C 时有部分恢复。  ▷电迁移  电迁移是指导体中的金属原子因电流流动而逐渐移位,形成空隙和小丘。因此,如果金属线中形成的空隙大到足以切断金属线,就会导致开路;如果这些凸起延伸得足够长以至于在受影响的金属与相邻的另一金属之间形成桥接,则可能导致短路。电迁移会随着电流密度和温度的升高而加快,尤其是在空隙形成后,会导致电流拥挤和局部发热。金属线发生故障的概率与温度成指数关系,与电流密度成平方关系,与导线长度成线性关系。铜互连器件可承受的电流密度约为铝的五倍,同时可靠性相似。  ▷热载流子退化  当沟道电子在 MOS 晶体管漏极附近的高电场中加速,会发生热载流子退化。在栅极氧化层中产生界面态、陷阱或空穴。它影响诸如阈值电压 VT、电流增益 β、导通电阻 RDS_ON 和亚阈值泄漏等参数。在较高温度下,平均自由程减少,降低了载流子获得的能量,使得热载流子退化在低温条件下更为显著。
2025-05-28 09:21 阅读量:534
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
型号 品牌 抢购
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码