ROHM开发出数十毫瓦超低功耗的设备端学习AI芯片

Release time:2022-10-08
author:Ameya360
source:网络
reading:3182

    全球知名半导体制造商ROHM(总部位于日本京都市)开发出一款设备端学习*AI芯片(配备设备端学习AI加速器的SoC),该产品利用 AI(人工智能)技术,能以超低功耗实时预测内置电机和传感器等的电子设备的故障(故障迹象检测),非常适用于IoT领域的边缘计算设备和端点*1。

ROHM开发出数十毫瓦超低功耗的设备端学习AI芯片

    通常,AI芯片要实现其功能,需要进行设置判断标准的“训练”,以及通过学到的信息来判断如何处理的“推理”。在这种情况下,“训练”需要汇集庞大的数据量形成数据库并随时更新,因此进行训练的AI芯片需要具备很高的运算能力,而其功耗也会随之增加。正因如此,面向云计算设备开发的高性能、昂贵的AI芯片层出不穷,而适用于边缘计算设备和端点(更有效地构建物联网社会的关键)的低功耗、可在设备端学习的AI芯片开发却困难重重。

    此次开发出的AI芯片,是ROHM在基于日本庆应义塾大学松谷教授开发的“设备端学习算法”,面向商业化开发的AI加速器*2(AI专用硬件计算电路)和ROHM8位高效CPU“tinyMicon MatisseCORE(以下简称“Matisse”)”构成。通过将2万门超小型AI加速器与高效CPU相结合,能以仅几十mW(仅为以往AI训练芯片的1/1000)的超低功耗实现训练和推理。利用本产品,无需连接云服务器,就可以在设备终端将未知的输入数据和模式形成“不同于以往”的数值并输出,因此可在众多应用中实现实时故障预测。

    未来,ROHM计划将该AI芯片的AI加速器应用在IC产品中,以实现电机和传感器的故障预测。计划于2023年度推出产品,于2024年度投入量产。

    日本庆应义塾大学 理工学部信息工学科 松谷 宏纪 教授表示:“随着5G通信和数字孪生*3等物联网技术的发展,对云计算的要求也越来越高,而在云服务器上处理所有数据,从负载、成本和功耗方面看并不现实。我们研究的‘设备端学习’和开发的‘设备端学习算法’,是为了提高边缘端的数据处理效率,创建更好的物联网社会。这次,我校通过与ROHM公司进行联合研究,进一步改进了设备端学习电路技术,并有望以高性价比的方式推出产品。我们预计在不久的将来,这种原型AI芯片将会成功嵌入ROHM的IC产品中,为实现更高效的物联网社会做出贡献。”

ROHM开发出数十毫瓦超低功耗的设备端学习AI芯片

    <关于tinyMicon MatisseCORE™>

    tinyMicon MatisseCORE(Matisse: Micro arithmetic unit for tiny size sequencer)是ROHM自主开发的8位微处理器(CPU),该产品旨在随着物联网技术的发展来提高模拟IC的智能化程度。凭借针对嵌入式应用而优化的指令集和最新的编译器技术,以高标准实现了更小的芯片面积和程序代码、以及更高速的运算处理能力。此外,该产品还符合汽车功能安全标准“ISO 26262”、ASIL-D等的要求,适用于对可靠性要求高的应用。另外,利用内置的自有“实时调试功能”,在调试时的处理可以完全不影响应用程序的运行,因此能在应用产品工作的同时进行调试。

ROHM开发出数十毫瓦超低功耗的设备端学习AI芯片

    Matisse和普通小型CPU的性能比较

    <AI芯片(配备设备端学习AI加速器的SoC)详细介绍>

    这次开发出的设备端学习AI芯片原型(产品型号:BD15035)在人工智能技术的基础上,采用了庆应义塾大学松谷教授开发的“设备端学习算法(三层神经网络*4的AI电路)”。为了推出可以投放市场的产品,ROHM将这种AI电路的大小从500万门缩小为2万门,仅为原来的0.4%,并将其重新构建为自有的AI加速器“AxlCORE-ODL”,同时,利用ROHM的8位高效微处理器“tinyMicon MatisseCORE”进行AI加速器的运算控制,使得仅数十毫瓦的超低功耗AI训练和推理成为可能。利用本产品,无需连接云服务器和事先进行AI训练,就可以设备终端将未知的输入数据和模式(例如加速度、电流、照度、声音等)形成“不同于以往(异常度)”的数值并输出,因此不仅可以降低云服务器和通信成本,还能通过终端AI进行实时故障预测(故障迹象检测)。

    另外,ROHM还提供可安装微控制器开发板“Arduino*5”用扩展板(配备Arduino兼容引脚)的评估板,以方便客户评估这款AI芯片。评估板上装有无线通信模块(Wi-Fi和Bluetooth®)以及64kbit EEPROM(内存),只需将该评估板与传感器等单元相连接,将传感器装在监控对象上,即可在显示屏上确认AI芯片的效果。

ROHM开发出数十毫瓦超低功耗的设备端学习AI芯片

("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
ROHM车载40V/60V MOSFET产品阵容中新增高可靠性小型新封装产品
  2025年12月18日,全球知名半导体制造商ROHM(总部位于日本京都市)宣布,适用于主驱逆变器控制电路、电动泵、LED前照灯等应用的车载低耐压(40V/60V)MOSFET产品阵容中,又新增HPLF5060(4.9mm×6.0mm)封装产品。  新封装产品与车载低耐压MOSFET中常见的TO-252(6.6mm×10.0mm)等封装产品相比,体积可以更小,通过采用鸥翼型引脚*1,还提高了其在电路板上安装时的可靠性。另外,通过采用铜夹片键合*2技术,还能支持大电流。  采用本封装的产品已于2025年11月起陆续投入量产(样品单价500日元/个,不含税)。新产品已经开始通过电商进行销售。  未来,ROHM将不断扩展该封装产品的机型,并计划于2026年2月左右将采用可润湿侧翼成型技术*3的更小型DFN3333(3.3mm×3.3mm)封装产品投入量产。  另外,ROHM已着手开发TOLG(TO-Leaded with Gullwing)封装产品(9.9mm×11.7mm),致力于进一步扩充大功率、高可靠性封装的产品阵容。  <开发背景>  近年来,车载低耐压MOSFET正在加速向可实现小型化的5050级以及更小尺寸的封装形式转变。然而,这些小型封装因引脚间距狭窄和无引脚结构,使确保其安装可靠性成为一大难题。ROHM针对这类课题, 通过在产品阵容中新增同时满足安装可靠性和小型化两方面需求的新封装产品,来满足车载市场多样化的 需求。  <应用示例>  主驱逆变器控制电路、电动泵、LED前照灯等  <关于EcoMOS™品牌>  EcoMOS™是ROHM开发的Si功率MOSFET品牌,非常适用于功率元器件领域对节能要求高的应用。 EcoMOS™产品阵容丰富,已被广泛用于家用电器、工业设备和车载等领域。客户可根据应用需求,通过噪声性能和开关性能等各种参数从产品阵容中选择产品。  “EcoMOS™”是ROHM Co.,Ltd.的商标或注册商标。  <术语解说>  *1) 鸥翼型引脚  引脚从封装两侧向外伸出的封装形状。散热性优异,可提高安装可靠性。  *2)铜夹片键合  替代传统上连接芯片和引线框架的引线键合方式,而采用铜制夹片(扁平金属桥)直接连接的一种技术。  *3)可润湿侧翼成型技术  一种在底部电极封装的引线框架侧面进行电镀加工的技术。利用该技术可提高安装可靠性。
2025-12-18 16:55 reading:239
ROHM推出广泛适用于直流有刷电机的通用电机驱动器IC!
  2025年11月13日,全球知名半导体制造商ROHM(总部位于日本京都市)今日宣布,推出可广泛适用于直流有刷电机的通用电机驱动器 IC“BD60210FV” ( 20V 耐压,2 通道) 和 “BD64950EFJ”(40V耐压,1通道),新产品适用于包括冰箱、空调等白色家电在内的消费电子以及工业设备领域。  近年来,从白色家电等消费电子到工业设备领域,控制机构的电动化进程加速,对更加节能的直流有刷电机的需求日益增长。另一方面,要求电机驱动器实现设计标准化、减少外置元器件数量、可靠性高、体积小巧。如何兼顾成本和设计效率已成为重要市场需求。ROHM针对这些需求,推出兼顾通用性、空间节省程度及设计便捷性的两款产品“BD60210FV”和“BD64950EFJ”,助力提升应用产品的设计效率与性能。  两款产品均采用通用性好的封装形式,不仅易于引入新设计中,还可显著提升电路变更、衍生型号开发以及设计标准化的效率。另外,新产品还实现低待机电流(Typ:0.0μA,Max:1.0μA),可大幅提升应用产品待机时的节能性能。  “BD60210FV”是一款可驱动2个直流有刷电机或1个步进电机的双路(2ch)H桥*1直接PWM控制*2型电机驱动器。通过采用无需升压的H桥电路结构,更大程度地减少了外置元器件数量,从而有助于进一步节省空间和简化设计。  而“BD64950EFJ”则采用单路(1ch)H桥电路,同时支持直接PWM控制和恒流PWM控制*3两种控制方式。另外,采用低导通电阻设计,可有效抑制发热,实现高效率电机驱动。该产品耐压40V,适用于需要高电压(24V)驱动的有刷直流电机。  新产品已经开始量产(样品价格300日元/个,不含税),并已开始通过电商进行销售,均可购买( BD60210FV 、 BD64950EFJ )。另外, ROHM 还提供可助力应用产品开发和设计的评估板(BD60210FV-EVK-001、BD64950EFJ-EVK-001)。  未来,ROHM将继续扩充消费电子和工业设备领域的电机驱动解决方案,为社会舒适性的提升和节能贡献力量。  <应用示例>  ・消费电子设备  冰箱(制冰机旋转和风门控制)、空调(百叶窗控制)、打印机(导轨移动)  扫地机器人(刷头旋转)、热水器和电饭煲(阀门控制)、加湿器(驱动风扇控制)  ・工业设备  自动门和卷帘门(动作控制)、小型传送带(传送控制)、电动工具(旋转控制)其他各种小型电机控制  <术语解说>  *1) H桥  一种用来控制电机旋转方向的电子电路。在绘制电路图时,因4个开关(晶体管或MOSFET)呈H形排列而被称为“H桥”。  *2) 直接PWM控制  直接将PWM(脉宽调制)信号传输至H桥等电路,以此直接控制电机转速的方式。通过PWM占空比调节供给电机的电压。电路结构相对简单,响应速度较快。  *3) 恒流PWM控制  为保持电机电流恒定而采用PWM控制方式。这种控制方式能使电机在低速时仍能保持转矩,适用于需要精密控制的设备等应用。
2025-11-13 16:10 reading:419
ROHM推出适用于AI服务器的宽SOA范围5×6mm小尺寸MOSFET
  2025年11月11日,全球知名半导体制造商ROHM(总部位于日本京都市)今日宣布,开发出实现业界超宽SOA*1 范围的100V 耐压功率MOSFET“RS7P200BM” 。该款产品采用5060 尺寸(5.0mm×6.0mm)封装,非常适用于采用48V电源AI服务器的热插拔电路*2,以及需要电池保护的工业设备电源等应用。  RS7P200BM采用小型DFN5060-8S(5060尺寸)封装,与ROHM在2025年5月发售的DFN8080-8S(8.0mm×8.0mm尺寸)封装AI服务器用功率MOSFET“RY7P250BM”相比,可实现更高密度的安装。   新产品在VDS=48V工作条件下,可确保脉冲宽度10ms时7.5A、1ms时25A的宽SOA范围,同时,还实现了与之存在权衡关系的低导通电阻(RDS(on))*3 4.0mΩ(条件:VGS=10V、ID=50A、Ta=25℃)。通过抑制通电时的发热,有助于提高服务器电源的效率并减轻冷却负荷,进而进一步降低电力成本。  新产品已于2025年9月开始量产(样品价格800日元/个,不含税)。本产品已经开始通过电商进行销售,可咨询AMEYA360客服。  未来,ROHM将持续扩充适用于AI服务器等所用的48V电源的产品阵容,通过提供效率高且可靠性高的解决方案,为进一步节能和构建可持续的ICT基础设施贡献力量。  开发背景  随着AI技术的飞速发展和普及,搭载生成式AI和高性能GPU的服务器对稳定运行和能效提升的需求日益增长。尤其在热插拔电路中,能够应对浪涌电流*4和过负载、实现稳定运行的宽SOA范围功率MOSFET至关重要。另外,在数据中心和AI服务器领域,为了节能而正在加速向电源转换效率的48V电源系统转型,如何构建与其适配的高耐压、高效率电源电路成为当前的技术课题。  ROHM通过推出符合市场需求的5060尺寸封装新产品,进一步强化适用于AI服务器热插拔电路的100V耐压功率MOSFET产品阵容。未来,ROHM将继续致力于降低数据中心的功率损耗、减轻冷却负荷,进而为提升服务器系统的可靠性和节能性能做出贡献。  应用示例  48V系统AI服务器和数据中心电源的热插拔电路  48V系统工业设备电源(叉车、电动工具、机器人、风扇电机等)  AGV(自动引导车)等电池驱动的工业设备  UPS、应急电源系统(电池备份单元)  关于EcoMOS™品牌  EcoMOS™是ROHM开发的Si功率MOSFET品牌,非常适用于功率元器件领域对节能要求高的应用。 EcoMOS™产品阵容丰富,已被广泛用于家用电器、工业设备和车载等领域。客户可根据应用需求,通过噪声性能和开关性能等各种参数从产品阵容中选择产品。・EcoMOS™是ROHM Co., Ltd.的商标或注册商标。  术语解说  *1) SOA(Safe Operating Area)  元器件不损坏且可安全工作的电压和电流范围。超出该安全工作区工作可能会导致热失控或损坏,特别是在会发生浪涌电流和过电流的应用中,需要考虑SOA范围。  *2)热插拔电路  可在设备电源运转状态下实现元器件插入或拆卸的、支持热插拔功能的整个电路。由MOSFET、保护元件和接插件等组成,负责抑制元器件插入时产生的浪涌电流并提供过流保护,从而确保系统和所连接元器件的安全工作。  *3) 导通电阻(RDS(on))  MOSFET启动时漏极与源极之间的电阻值。该值越小,工作时的损耗(功率损耗)越少。  *4)浪涌电流(Inrush Current)  在电子设备接通电源时,瞬间流过的超过额定电流值的大电流。因其会给电源电路中的元器件造成负荷,所以通过控制浪涌电流,可防止设备损坏并提高系统稳定性。
2025-11-11 17:42 reading:488
ROHM:AI将耗尽全球电力?解决AI数据中心电力难题的功率半导体
  AI的惊人发展为社会带来巨大变革,同时也凸显出一个严峻课题——支撑其运转的数据中心,电力消耗量正急剧攀升。  为解决这一电力难题、助力日本引领AI时代,日本经济产业省正大力推进名为“瓦特·比特构想”的国家战略,旨在实现超节能型数据中心并在全国进行优化布局。  通过“瓦特·比特协同官民座谈会”等平台,日本经济产业省正联合电力、通信、数据中心、半导体等各行业力量,全力推动这一构想的实现。  目录  1. AI是否将耗尽全球电力?  2. 可再生能源在数据中心领域的应用  3. 服务器机柜会持续增加吗?  4. 当前的电源系统还能满足需求吗?  5. 满足下一代AI数据中心要求的功率半导体是什么样的?  6. 总结  产品介绍、详细信息、其他链接等  1. AI是否将耗尽全球电力?  以ChatGPT为代表的生成式AI迅速普及,直接导致数据中心的电力消耗激增。复杂的AI模型在训练与推理过程中需要庞大的计算资源,而这些资源由24小时不间断运转的数据中心高性能服务器提供支撑。  电力消耗的急剧增加不仅加重了地区环境的负荷,从稳定供电的角度来看也引发了担忧。展望AI的进一步发展,传统的电力供应体系正逐渐显现出局限性。  在这种背景下,亟待解决的课题可归纳为三点:“节能化”“可再生能源的利用”“数据中心的区域分散布局”。要实现可持续社会,必须摆脱对化石燃料发电的依赖,将太阳能、风能等可再生能源发电视为电力供应的必要方式。  2. 可再生能源在数据中心领域的应用  如今,作为社会重要基础设施的数据中心正迎来重大转型期。  此前,受低延迟通信需求驱动,“城市型数据中心”多集中建设于东京等大都市圈,为金融、医疗健康、边缘计算等对高速且低延迟的数据访问有要求的服务提供支撑。但随着AI普及带来的用电量增加,以及从大规模灾害时的业务连续性(BCP)角度考量,近年来数据中心向郊区分散的趋势加速。  “郊外型数据中心”易于确保广阔土地,适合引入太阳能、风能等可再生能源。此外,在电网容量充裕的地区可期待稳定供电;在气候凉爽、水源丰富的地区,冷却效率也会提升,进而降低运营成本。因此,郊外型数据中心在云托管、备份、灾害恢复系统、大规模存储等领域的应用不断推进。  3. 服务器机柜会持续增加吗?  无论是难以确保场地的“城市型”数据中心,还是易于获取广阔土地的“郊外型”数据中心,其服务器安置空间都存在局限。  因此,当前用于存放服务器的机柜,正朝着能高效容纳更多高性能服务器的“高密度AI服务器机柜”方向演进。  相较于数据中心整体服务器机柜总数的大幅增长,未来更可能呈现“高密度化”趋势:通过增加单个机柜中搭载的CPU、GPU及其他功能板卡,在有限空间内大幅提升单机柜计算能力,从而释放最大性能。  形象地说,即便外观相同的服务器机柜,其内部的容纳能力也可能提升数倍。  这种高性能化、高密度化对电力供应机制提出了重大变革需求。传统的多级电力转换存在较大功率损耗,已难以实现高效供电。因此,未来将推进减少电力转换步骤、推进高压直流(HVDC)等技术革新,而SiC和GaN功率半导体的有效利用也将变得不可或缺。以ROHM为代表的各企业,正致力于相关技术研发,为这一电源系统的重大变革提供支持,助力数据中心实现整体节能与高性能化。  4. 当前的电源系统还能满足需求吗?  高性能AI服务器(尤其是GPU)的功耗急剧增加,正迫使现有数据中心的电源架构(供电设计)进行根本性重构。原因在于,当前的多级电力转换存在较大转换损耗,已难以实现高效供电。  当前数据中心的供电流程为:高压交流电(AC)输入后,通过多台变压器和整流器逐步降压,最终转换为服务器所需的低压直流电(DC)。但是,这种多级转换会在每个步骤产生功率损耗,导致效率下降。  为此,数据中心未来将以电力转换效率提升和可靠性提升为目标,推进以下变革:  · 减少电力转换步骤  目前已出现整合多个转换步骤的趋势,例如从高压交流电(AC)直接转换为直流电(DC),或从高压直流电一次性降压至服务器所需电压。通过大幅减少电力转换步骤,可将转换损耗降至最低水平,提升系统整体效率并降低故障风险。  · 支持高压输入/高压直流(HVDC)电源  服务器机柜的输入电压正从传统的12VDC、48VDC等低电压向400VDC甚至800VDC(或±400VDC)等高电压过渡。提高电压可降低电力传输时的电流,从而实现母线轻量化。  另外,不采用交流电,而是以高压直流电直接为服务器机柜供电的“HVDC”系统正逐步推广。HVDC可减少AC/DC转换器的数量,实现更灵活的电力调控与双向输电,并更容易适用可再生能源。  · 固态变压器(SST,Solid State Transformer)的发展  变压器设备有望从传统变压器向采用半导体技术的SST(Solid State Transformer)演进。与传统设备相比,SST被认为是一种能够显著推动小型化的技术方案。  · SiC/GaN功率半导体需求增长  要实现高效高压电源系统,就需要传统硅(Si)半导体难以企及的性能。因此,SiC和GaN功率半导体成为必然选择。它们在高压输入条件下仍能实现低损耗、高频运行和高温工作,非常有助于电源系统的小型化与效率提升。  此外,不仅电源系统,服务器机柜内的各类设备也在向多功能化、高性能化发展,这将有助于进一步提升能效。  ROHM也在加速面向下一代服务器的解决方案研发,除了利用“EcoSiC™系列”“EcoGaN™系列”“EcoMOS™系列”等技术的现有产品(如SiC/GaN/Si IGBT、隔离型栅极驱动器、冷却风扇驱动器、SSD用PMIC、HDD用复合电机驱动器)外,还计划开发大电流LV MOS、隔离型DC-DC、SoC/GPU用DC-DC、eFuse等产品。  *EcoSiC™、EcoGaN™、EcoMOS™均为ROHM Co., Ltd.的商标或注册商标。  为应对市场变革,ROHM在深度优化现有产品群性能的同时,正积极推进以SiC和GaN为核心的功率半导体创新产品研发,以灵活响应新的市场需求。通过这些举措,ROHM将为从数据中心末端的服务器机柜到整个系统,提供高耐压、高效率的元器件,为下一代电源系统提供支撑。  5. 满足下一代 AI 数据中心要求的功率半导体是什么样的?  ·高压大电流场景适用SiC器件  SiC器件在需要高电压大电流的领域具备显著优势。  如前所述,随着服务器机柜输入电压向高压演进,传统54V机柜电源系统除面临物理空间限制外,还存在用铜量过高、功率转换损耗等问题。  为此,在下一代数据中心电源系统中采用ROHM的SiC MOSFET,可使其在高电压、高功率条件下发挥出优异性能,通过降低开关损耗及导通损耗实现效率提升,并实现满足紧凑、高密度系统要求的高可靠性。  这不仅能将能耗降到更低,还有助于削减用铜量,简化数据中心整体的功率转换过程。  ·高效化、小型化场景适用GaN器件  SiC适用于高电压大电流场景,而GaN则在100V~650V范围内性能优势显著,可实现优异的介电击穿强度、低导通电阻和超高速开关特性。  AI服务器比通用服务器处理的数据量更大,需运行高性能GPU、大容量存储器及高性能软件。因此耗电量更多,散热与冷却也更为重要。  在电源模块中使用可实现高速开关(高频运行)的GaN HEMT,能够最大限度降低功率损耗。功率转换效率的大幅提升有望带来节能效果,从而降低运营成本并减轻环境负荷。  此外,具有高电流密度的GaN器件与传统硅器件相比,体积可减小约30%~50%,便于为电源模块、充电器等设备预留空间,同时简化散热设计。  而且,通过单元小型化,可利用节省出的空间,减轻冷却系统负担,进而有助于减小系统整体的体积并提高其可靠性。加之GaN器件耐久性高且适用于高频应用,因此被视为数据中心的理想选择。  ROHM通过采用能进一步提升GaN器件开关性能的自有Nano Pulse Control™技术,成功将脉冲宽度缩短至最小2ns。作为EcoGaN™系列,除150V和650V的GaN HEMT、栅极驱动器外,还包括整合了上述器件的Power Stage IC等产品,为满足AI数据中心对小型、高效电源系统的需求,ROHM正在不断扩充相关产品阵容。  *Nano Pulse Control™为ROHM Co., Ltd.的商标或注册商标。  6. 总结  AI的进化从未停止,随之而来的电力需求增长已成为不可回避的现实。  据IEA(国际能源署)预测,未来五年全球数据中心的电力需求较当前增长一倍以上,达到约9,450亿kWh,其中半数将由太阳能、风能等可再生能源提供。这明确表明,在耗电量巨大的数据中心领域,光伏发电(PV)、储能系统(ESS)等可再生能源市场正在快速崛起。  为应对这一课题,日本政府正以国家战略“瓦特·比特构想”为框架,通过官民协同机制推进多维度解决方案,包括提升电力系统效率、最大化利用可再生能源、优化数据中心布局等。  ROHM以SiC、GaN器件等先进功率半导体技术为核心,拥有可实现高效电源系统及适配高压输入的丰富产品群。同时,为满足下一代AI数据中心的需求,正积极投入新产品研发。我们将通过这些技术,为以更环保、可持续的方式实现AI带来的美好未来贡献力量。  关于个别产品的咨询,ROHM还设有可直接向ROHM提问的讨论页面,以及可查阅相关信息的FAQ页面。欢迎大家充分利用这些资源。  *Engineer Social Hub™是ROHM Co., Ltd.的商标或注册商标。  产品介绍、详细信息、其他链接等  ・关于ROHM的SiC功率器件  GaN功率器件 | 分立半导体 | ROHM Co., Ltd. - ROHM Semiconductor  ・关于ROHM的SiC MOSFET  SiC MOSFET - 产品搜索结果 | ROHM Co., Ltd. - ROHM Semiconductor  ・关于ROHM的GaN功率器件  GaN功率器件|分立半导体| ROHM Co., Ltd.-ROHM Semiconductor  关于ROHM的GaN HEMT Power Stage IC  GaN HEMT Power Stage IC - 产品搜索结果 | ROHM Co., Ltd. - ROHM Semiconductor  ・关于ROHM的IGBT  IGBT | 分立半导体 | ROHM Co., Ltd. - ROHM Semiconductor  ・与NVIDIA之间的合作  罗姆为英伟达800VHVDC架构提供高性能电源解决方案 | ROHM Co., Ltd. - ROHM Semiconductor  ・关于适用于AI服务器的MOSFET“RY7P250BM”  ROHM开发出适用于AI服务器的功率MOSFET~兼具更宽SOA范围和更低导通电阻~ | ROHM Co., Ltd. - ROHM Semiconductor  关于SiC模块“HSDIP20”  ROHM推出高功率密度的新型SiC模块,将实现车载充电器小型化! | ROHM Co., Ltd. - ROHM Semiconductor
2025-11-05 14:18 reading:397
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
model brand To snap up
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code