村田:什么是UWB(超宽带)无线通信?使用UWB的定位方法有哪些应用? ​

Release time:2023-10-25
author:AMEYA360
source:村田
reading:2175

  UWB是Ultra-Wide Band的缩写,意思是超宽带。UWB无线通信是使用超宽带的频率带宽的无线通信,其主要特征是能够实现高精度定位。近年来,已普及至智能手机防丢失、高阶汽车智能钥匙等民用设备。预计未来将在多个领域普及。

村田:什么是UWB(超宽带)无线通信?使用UWB的定位方法有哪些应用? ​

  UWB无线通信技术有哪些独特优势?技术发展历史如何?有什么主要用途呢?

  UWB无线通信的特征

  IEEE802.15.4z是UWB无线通信的代表性标准,其中有使用Impulse Radio的方式,Impulse Radio使用持续时间短的脉冲信号。该标准的主要特征如下:

  高精度测距和定位

  安全性高

  对其他通信干扰弱

  低功耗

  UWB无线通信如何展现这些特征?

  在UWB无线通信中,如图1所示,将宽度为2ns(纳秒,10-9秒)左右的脉冲作为数据进行传输。这种短持续时间脉冲具有能进行高分辨率的测距和定位的特性。

  另一方面,时域中的脉冲宽度小意味着频域中的功率谱占据很宽的频带(通信中的时域和频域将在后文解说)。

  图2定性地显示了该频域中UWB无线通信的传输功率(功率谱密度)。例如,如果同第2代手机和Wi-Fi以及第3代手机等传统通信所使用的频率带宽相比较,可以看到UWB无线通信的频率带要宽得多。

  此外,UWB无线通信的传输功率峰值不仅低于其他通信方式,而且其设定值低于FCC(Federal Communication Commission:美国联邦通信委员会)*1规定的无线电波辐射数字设备的噪声水平规定值-辐射电磁噪声规定值?41.3dBm/MHz*2(75nW/MHz)。

  由于UWB无线通信具有以上所述的使用频率带宽、传输功率等级低于噪声等级的通信特性,因此对其他通信的干扰较弱,且通信本身不为第三方所知,所以其安全性高,而且,还具有能进行低功耗通信的特点。

  *1 FCC(Federal Communication Commission:美国联邦通信委员会):在美国参与管理和监管美国全部通信(无论是无线还是有线)的政府机构。

  *2 dBm/MHz:每1MHz频率宽度的功率等级(功率谱密度)。dBm是将功率转换为常用对数时的单位。在通信领域中,需要处理的数值范围很广,直接处理很不方便。所以通常使用对数表示来缩小其范围。

  UWB技术的历史和法规

  自1960年代以来,UWB技术在美国主要作为军用雷达进行研究。直到1994年左右,它还是一种被视为军事机密的通信技术。从1998年左右开始,美国FCC开始考虑将UWB用于民用,并于2002年获得批准,此后,UWB芯片套件等的研究不断向前推进。

  到2019年之后,UWB才广为公众所知。引发这一现象的是配备UWB模块的智能手机的问世。由此,在过去未将UWB用于民用目的的国家,使用许可也取得了进展。

  UWB技术就是这样发展起来的,如果特别关注频率带宽规定的话,会发现FCC分配的UWB无线电频率带宽是3.1GHz-10.6GHz之间的7.5GHz。另一方面,欧盟、欧亚大陆、东亚、大洋洲等国家和地区分配的带宽与此略有不同,其规定是在室内和室外主要能使用6.0GHz-9.0GHz左右的带宽。

  然而,目前大多数UWB模块遵守的是IEEE(Institute of Electrical and Electronic Engineers:电气与电子工程师协会)*3在 2007年采用的短距离无线标准IEEE802.15.4a中指定UWB优先使用通道号9(中心频率:7987.2MHz,频率带宽:499.2MHz)的规格。

  *3 IEEE(Institute of Electrical and Electronic Engineers:电气与电子工程师协会):世界上最大的电气领域学术研究组织。也是该领域的技术标准化组织。

  UWB无线通信的用途

  这里,我们对UWB无线通信在民用和工业中的主要用途以及今后可期待的用途进行介绍:

  民用UWB无线通信设备和服务

  - 防范丢失

  通过在物品上贴上UWB标签,可以防范其丢失。例如,将UWB标签贴在包、钱包、钥匙等上面,使用配备有UWB模块的智能手机,可以以cm级精度定位UWB标签的位置,并找到这些物品。此外,虽然UWB标签的电池是纽扣电池,但由于功耗低,所以被认为可以使用1年左右。

  自2019年以来,UWB模块不仅越来越多地配备在智能手机中,而且还配备在平板电脑、智能手表和智能音箱等民用设备中。今后,随着使用UWB无线通信的各式产品和服务的出现,预计将成长为一个大规模的市场。

  - 安全地入退馆和入退室

  通过使用配备UWB模块的智能手机,可以构建不用手且安全地入退馆和入退室的系统。

  利用UWB的高精度测距和高安全性的特征,可以在迄今为止使用密码、物理钥匙、IC卡等的公寓等住宅以及处理机密信息的办公室和工厂等处不需要取出钥匙以及IC卡,将智能手机等放在口袋或包里即可安全地解锁入口。能够顺利入退馆和入退室的应用程序有望得到普及。

  - 免提支付和计费

  通过使用配备UWB模块的智能手机,可以在超市、便利店、餐馆等商业设施构建不用手且安全的支付系统,此外,还能在车站检票口、娱乐设施、住宿设施、停车场等处构建计费系统。

  利用UWB的高精度测距和高安全性的特征,不需要拿出钱包、IC卡、智能手机等即可不用手、顺利地进行支付和计费的应用程序有望得到实用化和普及。

  汽车用UWB无线通信设备及应用

  - 智能钥匙

  作为利用UWB无线的高精度测距和定位的用途之一的是汽车智能钥匙。例如,可以配备以下操作功能:通过在汽车附近使用UWB进行无线通信在约1m以内判断车主并解锁,或者在车主位于数十厘米以内时启动发动机。

  此外,由于UWB无线的传输功率很低,是一种具有高度保密性的通信,因此可以防范中继攻击(第三方中继传统无线钥匙持续输出的电波并解锁的盗窃手段)等,强化安全性。

  - 车载网络的无线化

  如今,配备各式各样的传感器、雷达、AI系统等并让它们相互合作的汽车IoT化不断发展,作为CAN(Controller Area Network)等车载网络使用的线束(由电线和连接端子组成的车载部件)据说在某些车型上的总长度已达到10km,总重量已达到50kg。作为联网汽车也在并行发展,在这种情况下,与其他通信之间的干扰较弱的UWB无线技术被认为在实现车载网络无线化中非常有效。

  工业用UWB无线通信设备和系统

  - 工厂、仓库等的实时定位系统

  使用多个UWB锚点和UWB标签*4,可以构建高精度、实时掌握放置在工厂和物流现场等处的部件和包裹等的位置的系统-实时定位系统(RTLS:Real Time Location System)。

  *4 在使用UWB无线通信进行定位时,标签发出的信号被多个锚点接收,并能通过对信息进行处理来准确确定标签的位置(参见专栏)。工业UWB锚点通常与定位引擎、应用服务器等结合使用。

  UWB中的定位方法

  UWB中的定位方法

  作为使用UWB无线通信的定位方法,代表性的方法是将配备UWB功能的智能手机等终端或工业用UWB 锚点、通过UWB标签之间的ToF(Time of Flight)进行的测距以及通过AoA(Angle of Arrival)进行的测量角度进行组合。

  以下,我们对每种方法分别进行解说。

  通过ToF进行的测距

  通过使用UWB无线通信的ToF(Time of Flight)技术进行测距的原理是:通过测量从消息(信号)发送到接收的时间来计算到物体的距离。具体而言就是UWB发射器发送短脉冲信号,接收器接收该信号。从发送到接收所需的时间称为ToF。

  使用ToF技术的UWB测距可以根据电磁波的速度(光速)和所需的时间来计算距离。具体而言就是用所需时间和光速的乘积求出距离。可以通过UWB的超宽带特性利用短脉冲信号,因此,可以获得很高的时间分辨率和测量精度。由此,在传感和定位应用中可有望得高精度的测量结果,因此已被应用于各式各样的领域。

  UWB测距技术主要有2种手法:SS-TWR(Single-Sided Two-Way Ranging)和DS-TWR(Double-Sided Two-Way Ranging)。这些手法采用不同的方法通过信号往返进行距离测量。

  - SS-TWR:

  SS-TWR(Single-Sided Two-Way Ranging)是一种仅由一方的设备测量往返时间的方法。在这种手法中,设备A向设备B发送信号,设备B收到该信号后,向设备A发送回复信号。设备A测量从发送到接收所花费的时间并计算往返时间。此方法仅使用设备A就能进行测量,但需要两个设备的时钟同步。

  - DS-TWR:

  DS-TWR(Double-Sided Two-Way Ranging)是一种用两台设备测量往返时间并共享结果的方法。在这种手法中,设备A向设备B发送信号,设备B收到该信号后,向设备A发送回复信号。设备 A和设备B分别测量各自从发送到接收所需要的时间,并使用这些结果计算往返时间。这种方法不需要时钟同步,因此测量更容易,精度更高。

  通过AoA进行的角度测量

  AoA(Angle of Arrival)是一种计算从设备A看到的设备B放置方向的角度的方法。如图4所示,UWB无线中通过AoA进行的角度测量的原理是:设备B发射的电波被设备A的多根天线接收,并且根据接收的电波的相位差计算角度。使用这种方法,能通过用2根天线进行的角度测量(2D AoA)进行平面定位,以及通过用3根天线进行的角度测量(3D AoA)进行三维定位。

("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
村田:笔记本电脑MLCC啸叫问题分析与优化对策
  传统电子设备中使用了很多钽电容器和铝电解电容器,但近年来由于产品小型化和可靠性等问题,已逐步被陶瓷电容器替换。随着电子设备的多功能化和静音化的发展,在笔记本电脑、智能手机(手机)、汽车导航系统、无线充电等的电源电路中,以前不起眼的陶瓷电容器产生的“啸叫(声音)”已成为设计方面的一个大问题。  在笔记本电脑中,由电源线上使用的陶瓷电容器产生的“啸叫(声音)”有时会成为问题。如果将工作模式改为睡眠状态/待机画面等,笔记本电脑的内部动作将发生变化,因此“啸叫(声音)”的音量会根据工作模式而改变,听到的感受也会有所不同。  本文对笔记本电脑电源线中的电容器产生的“啸叫(声音)”的对策、评估方法以及产生机制进行介绍。  笔记本电脑“啸叫”  笔记本电脑中易于发生“啸叫(声音)”的工作模式,以下三种比较常见:  1.睡眠模式(降压转换器:PFM模式)  2.液晶背光(升压转换器:PWM调光)  3.摄像头模式/重负载模式(间歇工作)  笔记本电脑中易于发出“啸叫(声音)”的电容器在哪个位置?笔记本电脑中的电源线(DC-DC converter的一次侧)多使用电容器。若在该电源线上使用陶瓷电容器时,有时会产生啸叫。笔记本电脑电源线的简图(示意图)笔记本电脑的电路图(简图)  一般来说,容易产生“啸叫(声音)”的电容器具有以下几个特点:  1.电容器尺寸大。  2.静电容量大。  3.线电压和电压变动(电流变动)大。  4.同一条线上安装了多个符合上述内容的  陶瓷电容器。  总的来说,笔记本电脑电源线上的电容器容易产生“啸叫”的原因如下:  1.电源线电压为10~20V,比较高。  2.为了给CPU、摄像头、RF模块等各电路供电,电压容易发生变动。  3.如果元件尺寸/静电容量较大,由于施加电压而导致的介电质膨胀/收缩也会变大。  啸叫产生机制  为什么陶瓷电容器会产生“啸叫(声音)”?下面对啸叫产生机制和本公司进行的和啸叫评估方法进行说明。    啸叫的产生机制  多层陶瓷电容器上使用的铁电体需要有压电性。存在电场时,发生失真,由于芯片膨胀、收缩,产生“啸叫(声音)”。  采用啸叫对策的效果  与笔记本电脑中易于发生啸叫的工作模式/具有高声压级的工作模式——睡眠状态/待机画面相关的啸叫对策效果示例。  电源线上的电容器对应效果  如果在电源线中使用陶瓷电容器时产生啸叫,可以通过对产生啸叫的电容器采取啸叫对策来降低声压级——效果对比见上图。当然,改良啸叫问题的第一步,是进行电路啸叫问题的评估。  啸叫的评估  啸叫的评估方法主要是以下两种:  1.声压级测量  2.电压变动测量  既然“声音”就是问题所在,那么“声压级”就是主要的测量对象。电波暗箱中使测量物体处在工作状态,通过话筒,用声级计测量声压级。此外,为了评估和对策,用FFT分析仪确认声压级的频率特性。  声压级测量  为了调查产生啸叫的电容器,我们还可对“电压变动”进行测量。在被测物处于工作状态时,确认查电容器上是否施加了可听频率范围(20Hz~20kHz)内的纹波电压。  电压变动测量  声压级和电压变动有什么关系呢?  如果施加在电容器上的电压变动的频谱在与声压级的频率特性相同的频率时变高(下图红色虚线框内),则可以确定该电容器是产生啸叫的原因。  关于声压级和电压变动关系  案例:笔记本电脑电源线  将笔记本电脑的工作模式改变为睡眠模式/待机画面后,笔记本电脑内部的动作会发生变化,因此声压级/电压变动也会发生变化。操作模式不同,声压级也不同,所以,有必要对正在发生啸叫的工作模式和容易发生啸叫的工作模式分别进行评估。  操作模式不同,声压级也不同  下图为电源线中作为啸叫对策对象的电容器的简化电路图。粉色框表示电源线中容易产生啸叫的电容,是采取啸叫对策的对象。  电源线中作为啸叫对策对象的电容器(简化电路图)  在通过DC-DC转换器分支到各电路之前,它们在同一条电源线上,电压变动几乎相同。因此,有必要针对该电源线上的全部电容器采取预防啸叫的对策。  电源线的啸叫对策不是替换部分电容器,而是将电容器全部替换为防啸叫产品,从而可以将声压级进一步降低。  按照电路[A-C]的顺序,将普通电容器替换为防啸叫产品。  通过增加替换为防啸叫产品的电容器数量,逐渐降低声压级。  替换评估:  本次评估使用的电容器产品为村田制作所的以下两款MLCC:  对策前:  普通MLCC GRM31MR61E106KA01  对策后:  防啸叫产品 KRM31FR61E106KH01  睡眠和待机状态下的效果如下  睡眠状态的替换评估数据  待机画面的替换评估数据  防啸叫产品介绍  了解了啸叫的原因及相应对策,才能正确选择防啸叫产品。在村田公司,如果因陶瓷电容器的影响而产生了啸叫问题,会根据影响啸叫的原因提出使用防啸叫产品和元件配置等方面的建议,以应对改善啸叫问题。  啸叫的原因及对策  对策1:带金属端子MLCC  控制圆角以使其难以将振动传递到电路板,可以使用带有金属端子的类型,比如村田的KRM系列带金属端子多层陶瓷电容器,通过端子板等将陶瓷电容器浮起安装在电路板上,从而抑制振动向电路板传递。  村田的KRM系列带金属端子多层陶瓷电容器  对策2:带内插式基板低啸叫MLCC  控制圆角以使其难以将振动传递到电路板,也可以使用带内插式基板低啸叫片状多层陶瓷电容器,比如村田的ZR*系列。通过将陶瓷电容器贴装在插入板上,抑制电容器振荡传播的类型。  村田的ZR*系列带内插式基板低啸叫片状多层陶瓷电容器  对策3:使用不易产生啸叫的材料  使用不易产生啸叫的材料,比如村田的ECAS系列聚合物铝电解电容器。聚合物铝电解电容器的材料和结构都与陶瓷电容不同,因此该类型不会因电容而产生失真。  ECAS系列聚合物铝电解电容器  以上三种对策产品的参数和应用的对比如下图:  产品对比  总结  啸叫产生的机制  对电容器施加电压时,电路板会随着电压的振幅而振动,当振幅的周期位于可听频率范围(20Hz~20kHz)时,由电容器产生的啸叫就会作为“刺耳的声音”成为问题。  啸叫的评估方法  由于问题是“声音”,所以我们对声压级进行测量和评估并确认了替换效果。  仅靠声压级无法确定啸叫是否是由电容引起的。为了确认啸叫的产生机制,必须对电压变动进行测量和评估。(如有必要,还要对电路板的位移量进行测量和评估。)  笔记本电脑易发生啸叫的工作模式  笔记本电脑中易于发生啸叫的工作模式有三种:  (1)睡眠模式(降压转换器:PFM模式);  (2)液晶背光(升压转换器:PWM调光);  (3)摄像头模式/重负载模式(间歇工作)。  易于产生啸叫的电容器  易于产生啸叫的电容器通常有几个“特征”:  (1)电容器尺寸大;  (2)静电容量大;  (3)线电压和电压变动(电流变动)大;  (4)同一条线上安装了多个符合上述内容的陶瓷电容器。  在笔记本电脑中,电容器用于电源线(DC-DC转换器的一次侧)。电源线的电压一般较高,给功率较大的电路供电,所以容易产生电压变动,因此,这一部分易于产生啸叫。  本文讨论了笔记本电脑的替换评估方案。工作模式改变后,笔记本电脑内部的动作会发生变化,声压级/电压变动/电路板的位移量也会发生变化,因此有必要对每种易于产生啸叫的工作模式分别进行评估。在电源线(DC-DC转换器的一次侧)中使用了多个陶瓷电容器时,不是对电源线的部分电容器实施啸叫对策,而是将该电源线上的所有电容器全部替换为防啸叫产品,从而可以进一步降低声压级。
2025-12-10 13:23 reading:305
村田产品推荐 | 植入式医疗设备专用电容器
  从智能手机、LED照明等消费电子,到混合动力汽车、电动汽车,乃至对可靠性要求极高的航空航天与医疗设备,村田电容器都是其中至关重要的电子元件。  然而,民用消费电子与医疗(尤其是植入式设备)、车载等高性能设备,在可靠性理念上截然不同。前者侧重于成本控制,而后者则将可靠性置于首位,追求零缺陷。此外,两者在使用环境、寿命要求和评价标准上也存在显著差异。  在此为你介绍本公司的优势、医疗设备专用产品的概念以及代表性医疗设备专用电容器产品。  01 村田医疗设备专用电容器系列  村田针对医疗设备专用的电容器有很多代表性的产品医疗设备种类繁多,专用于“植入式医疗设备”与“便携式&可穿戴型医疗设备”的具有代表性的特色电容器产品包括:  植入式医疗设备的GCH/GCR系列。该系列电容器应用的医疗设备包括脑深部神经刺激装置、胃刺激装置、人工耳蜗、足下垂、心脏除颤器、起搏器、胰岛素泵等;  便携式&可穿戴型医疗设备的GRM系列,应用实例包括超声波回波、心电图、血气分析仪等。  下面主要介绍应用在植入式医疗设备的GCH/GCR系列。  02 植入式医疗设备 — GCH/GCR系列  植入式医疗设备种类繁多,比如脑深部神经刺激装置、胃刺激装置、人工耳蜗、足下垂、心脏除颤器、起搏器、胰岛素泵。植入式医疗设备的电路可以分为生命支持电路与非生命支持电路,村田专用于植入式医疗设备的电容器有GCH系列和GCR系列,其中村田建议GCR系列使用生命支持电路,GCH使用非生命支持电路。  非生命支持电路用于植入式诊断、植入式医疗康复、植入式神经刺激等。植入式医疗设备中的电路,由于故障而导致设备的功能下降或停止时,不会直接影响人的生命。植入式医疗设备  以心脏起搏器为例,起搏器这类植入式医疗设备需要植入体内,因此需解决通过设备小型化降低人体负担的课题(低侵袭化),近年来,小型化需求日益增长。鉴于此,本公司开发了可满足医疗标准的多层陶瓷电容器并完成商品化,其专用于植入式医疗设备,具备小型、大容量且高可靠性的特点。由此实现了植入式医疗设备的高密度设计,并为设备的进一步小型化做出了贡献。  村田对专用于植入式医疗设备的GCH/GCR系列实施了筛查,相比民生设备用MLCC的初始故障率低。此外,亦进行了延长寿命的设计。在耐湿负荷试验、热冲击循环等方面,民生设备用MLCC与高可靠性设备用MLCC的规格有很大不同。  03 GCH使用电路实例 — 心脏起搏器  下图是心脏起搏器(Pace Maker的)电路示意。C1为电池的储能电容器,C2是CPU去耦电容,C3是放电电路储能电容。心脏起搏器(Pace Maker)电路示意  这里,我们推荐村田的GCH系列:  C1 : 电池的储能电容  工作电压:1.8~3.6V  标称电压:6.3V~10V  容值范围:1~2.2uF  村田推荐:  GCH188R70J225KE01#(0603/6.3V/2.2uF)  GCH188C71A225KE01#(0603/10V/2.2uF)  C2 : CPU去耦电容  工作电压:0.9~1.2V  标称电压:6.3V~10V  容值范围:10~47uF  村田推荐:  GCH188R60J106ME11#  (0603/6.3V/10uF)  GCH188R61A106ME11#  (0603/10V/10uF)  C3 : 放电电路储能电容  工作电压:10~20V  标称电压:16V or 25V  容值范围:2.2~10uF  村田推荐:  GCH31CR71C106KE01#  (1206/16V/10uF)  GCH188R61C475KE11#  (0603/16V/4.7uF)  村田的GCH系列不断扩充小型、高容量产品系列,以期为植入式医疗设备的进一步小型化做贡献。  总结 :村田电容器的优势  村田电容器的优势在于持续的开发能力。  村田追求的小型大容量化重点在于电介质层的薄层化技术。确立了可高精度控制陶瓷粉体颗粒大小和形状及高密度且均匀分布的加工技术。更轻薄、更小巧、更准确。村田将继续开发高精尖电容器产品。
2025-12-04 16:00 reading:326
村田:基于多层LCP基材的低损耗超宽带天线设计与性能优
村田:MLCC更优?无线充电器中用多层陶瓷电容替换薄膜电容的评估
  无线充电器的谐振电路上有时安装的是薄膜电容器,MLCC更适于小型化,可有利于削减安装面积;另外,MLCC在器件表面温度控制和电力转换效率方面一般也具有优势。  这里为你介绍村田实施的、用多层陶瓷电容器(MLCC)替换薄膜电容器的评估。  评估对象  我们使用市面销售的无线充电器实施了替换评估。以下照片的红圈部分是原设计中作为谐振电容器而安装的薄膜电容器。  替换方案  原设计(上图)中薄膜电容器规格是7.3×6.5mm,0.33uF,63V。村田替换方案如下图所示,替换产品为GRM3195C2A104JA01(1206M,C0G,0.1uF,100V)。  方案评估  为了评估替换薄膜电容器后的结果,替换电容器前后,我们对充电时的以下特性(评估项目)进行了确认:  电容器表面上升温度  电力转换效率  测量电容器表面温度  电容器表面温度的测量条件设置如下:  操作环境:使用无线充电器时  测量环境:将无线充电器放入防风箱进行测量  测量设备:红外热摄像仪  测量时的室温:  测量薄膜电容器时:26.0°C  测量MLCC时:24.5°C最高温度:约57.0°C薄膜电容器:7.3×6.5mm,0.33uF,63V最高温度:约34.6°C  MLCC:GRM3195C2A104JA01(1206M,C0G,0.1uF,100V)×4pcs  本项测量确认出薄膜电容器和MLCC的表面上升温度之差为20°C以上。  此外,MLCC的ESR(电子自旋共振)低于薄膜电容器,能更低程度控制温度上升。ESR曲线对比图 :薄膜电容器 vs. MLCC  电力转换效率  使用上述电容器,对充电时的电力转换效率进行了评估。本项评估的确认结果为MLCC的电力转换效率比薄膜电容器优异2%以上。功率转换效率比较图 :薄膜电容器 vs. MLCC  总结  我们将无线充电器原设计中的薄膜电容器替换为MLCC,并对充电时电容器表面上升温度、以及电力转换效率特性进行了确认。结果显示,使用MLCC的方案优点突出,具体表现在以下三个方面:  电容器表面上升温度  确认出MLCC的ESR(电子自旋共振)低于薄膜电容器,薄膜电容器和MLCC的表面上升温度之差为20°C以上。  电力转换效率  确认结果为MLCC的电力转换效率比薄膜电容器优异2%以上。  空间优势  在MLCC和薄膜电容器的单体比较下,MLCC更适于小型化,可有利于削减安装面积。  替代方案使用了4个村田制作所的MLCC:GRM3195C2A104JA01(1206M,C0G,0.1uF,100V)。
2025-11-26 13:47 reading:358
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
model brand To snap up
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code