江西萨瑞微电子SiC 和 GaN赋能AI服务器电源系统

Release time:2025-04-03
author:AMEYA360
source:江西萨瑞微
reading:721

  01AI服务器电源的核心挑战与技术需求

  超高功率密度:单机架功率已从传统服务器的数千瓦提升至数十千瓦(如英伟达DGX-2需10kW,未来GB300芯片预计达1.4kW单芯片功耗),要求电源方案在有限空间内实现高效能量转换。

江西萨瑞微电子SiC 和 GaN赋能AI服务器电源系统

  高频化与高效率:单个 GPU 的功耗将呈指数级增长,到 2030 年将达到约 2000 W,而 AI 服务器机架的峰值将达到惊人的 >300 kW。这些要求对数据中心机架的 AC 和 DC 配电系统进行新的架构更改,重点是减少从电网到核心的转换和配电功率损耗。为降低损耗并适配GPU/TPU的高频运算,电源转换频率逐步提升至MHz级,同时需将转换效率从传统的96%提升至98%以上,以减少散热成本与碳排放。

  高压化与稳定性:输入电压向800V DC-HVDC(高压直流)演进,输出电压则需精准降至芯片级所需的0.8V-12V,要求器件具备宽电压范围适应性与低噪声特性。

  02PSU的拓扑图及演变

  图 2(a)显示了开放计算项目 (OCP) 机架电源架构的示例图。每个电源架由三相输入供电并容纳多个 PSU;每个 PSU 由单相输入供电。机架向母线输出直流电压(例如 50 V),母线还连接到 IT 和电池架。

江西萨瑞微电子SiC 和 GaN赋能AI服务器电源系统

  AI 趋势要求 PSU 进行功率演进,如图 2(b)所示。让我们通过实施拓扑和设备技术建议的示例来介绍这些 PSU 的每一个代。

江西萨瑞微电子SiC 和 GaN赋能AI服务器电源系统

  AI 服务器机架 PSU 的趋势和功率演进

  第一代 AI PSU 高效电能转换基石

  在第一代 AI PSU(2010-2018 年)的硅基架构框架下,实现5.5-8kW 功率、50V 输出、277V 单相输入

  当前的AI服务器PSU大多遵循ORv3-HPR标准[9]。相较于先前的ORv3 3 kW标准[9],该标准的大部分要求(包括输入和输出电压以及效率)保持不变,但增加了与AI服务器需求相关的更新,例如,更高的功率和峰值功率要求(稍后详述)。此外,由于与BBU架的通信方式有所调整,输出电压的调节范围变得更窄。

江西萨瑞微电子SiC 和 GaN赋能AI服务器电源系统

  尽管每个电源架都通过三相输入(400-480 Vac L-L)供电(见图2),但每台PSU的输入仍为单相(230-277 Vac)。图3展示了符合ORv3-HPR标准的第一代PSU的部署示例:PFC级可以采用两个交错的图腾柱拓扑结构,其中,650V CoolSiC™ MOSFET用于快臂开关,600V CoolMOS™ SJ MOSFET用于慢臂开关。DC-DC级可以选用650V CoolGaN™晶体管的全桥LLC,次级全桥整流器和ORing则使用80V OptiMOS™ Power MOSFET。

  推荐使用萨瑞微电子800V-1000V整流桥

江西萨瑞微电子SiC 和 GaN赋能AI服务器电源系统

  第二代AI PSU:增加线路电压

  如上所述,随着机架功率增加到300kW以上,电源架的功率密度变得至关重要。因此,下一代PSU的设计方向是,在单相架构中实现8kW至12kW的输出功率。随着每个机架的功率增加,数据中心中的机架数量在某些情况下,可能会受配电电流额定值和损耗的约束。因此,为了降低交流配电的电流和损耗,部分数据中心可能会将机架的交流配电电压从400/480V提高到600Vac L–L(三相),同时将PSU的输入电压从230/277Vac 提高到347Vac(单相)。

江西萨瑞微电子SiC 和 GaN赋能AI服务器电源系统

江西萨瑞微电子SiC 和 GaN赋能AI服务器电源系统

  对于DC-DC级来说,三相LLC拓扑结构是一种理想选择,其中,750V CoolSiC™ MOSFET用于初级侧开关,80V OptiMOS™ 5 Power MOSFET用于次级全桥整流器和ORing。由于增加了第三个半桥开关臂,该解决方案能够提供更高的功率,有效降低输出电流的纹波,并通过三个开关半桥之间的固有耦合实现自动电流分配。

  推荐使用萨瑞微高频开关

  高频开关(500V硅基MOS推荐)

江西萨瑞微电子SiC 和 GaN赋能AI服务器电源系统

  高频开关(650V硅基MOS推荐)

江西萨瑞微电子SiC 和 GaN赋能AI服务器电源系统

  硅基MOSFET: 500V/650V硅基MOS:采用沟槽式结构,适用于中低频(<500kHz)、中等功率场景,如辅助电源或低压侧开关,导通电阻低至30mΩ以下,支持快速开关响应。

  高频开关(600V超结MOS推荐)

江西萨瑞微电子SiC 和 GaN赋能AI服务器电源系统

  高频开关(650V超结MOS推荐)

江西萨瑞微电子SiC 和 GaN赋能AI服务器电源系统

  超结MOSFET(600V/650V/800V):通过电荷平衡技术突破硅基材料限制,实现高耐压与低导通电阻的平衡(如650V型号Rds(on)≤15mΩ),适用于1MHz以上高频场合,可显著减小磁性元件体积,提升功率密度。

  碳化硅MOSFET(650V/1200V/1700V): 针对800V高压输入与超高频率(>2MHz)场景,碳化硅器件展现出无可替代的优势:

  材料特性:禁带宽度是硅的3倍,支持更高结温(175℃)与耐压,开关损耗降低70%以上,适用于全碳化硅LLC拓扑,转换效率可达98.5%。

  第三代AI PSU:三相架构与400V配电

  为了进一步提高机架功率,第三代 AI PSU 将采用更具颠覆性的机架架构,如下所示:

  1PSU输入:从单相转为三相,以提高功率密度,并降低成本

  2电源架PSU输出电压:从50V提升到400V,以降低母线电流、损耗和成本

  三相输入和 400 V 输出 PSU 的示例实现,其中包含推荐的设备和技术。PFC 级是 Vienna 转换器,这是三相 PFC 应用的流行拓扑。它的主要优势在于,由于其分离总线电压,它允许使用 650 V 设备,使用两倍数量的背对背 CoolSiC MOSFET 650 V 和 CoolSiC 1200 V 二极管。由于 PFC 输出是分离电容器,因此每个电容器电压为 430 V,并向全桥 LLC 转换器供电,初级和次级侧均配备 CoolGaN 晶体管 650 V。两个 LLC 级在初级侧串联,在次级侧并联,以向 400 V 母线供电。

  或者,两个背靠背的 CoolSiC MOSFET 650 V 可以用 CoolGaN 双向开关 (BDS) 650 V 代替,后者是真正的常闭单片双向开关。这意味着单个 CoolGaN BDS 可以取代四个分立电源开关,以获得相同的 RDS(on),因为它在 RDS(on)/mm2 方面具有高效的芯片尺寸利用率。

  在DC-DC变换器的次级整流中,同步整流MOS管替代传统二极管,消除肖特基势垒电压,大幅降低导通损耗:

  产品特性:低栅极电荷(Qg<10nC)与极低导通电阻(如40V耐压型号Rds(on)≤5mΩ),支持全负载范围高效运行。内置体二极管反向恢复电荷(Qrr)极低,减少振荡与EMI干扰,适配高频同步整流控制方案。

  技术优势:配合驱动电路实现ZVS(零电压开关)或ZCS(零电流开关),在10kW以上功率模块中,可将整流效率从95%提升至99%以上。

  WBG 对 AI PSU 的好处

  宽带隙 (WBG) 半导体(例如 CoolGaN)成为 AI PSU 的最佳选择,因为它们在更高的开关频率下提供最佳效率,从而实现更高功率密度的转换器,而不会影响转换效率。

  除了 AI PSU 的标称功率显著上升外,GPU 还会吸收更高的峰值功率并产生高负载瞬变。因此,DC-DC 级输出必须足够动态,而电压过冲和下冲必须保持在规定的限值内。可以通过提高开关频率来增加 DC-DC 级输出动态,从而增加控制环路带宽。

  CoolGaN 器件因其卓越的 FoM 和 Si、SiC 和 GaN 器件中最低的开关损耗而轻松满足了更高开关频率的要求。尤其是在软开关 LLC 转换器中,CoolGaN 具有最低的输出电容电荷 (Qoss),这对于更轻松地实现 ZVS(零电压开关)起着至关重要的作用。随后,这有助于更精确地设置死区时间,从而消除不必要的死区时间传导损耗。

  辅助电源LDO推荐

  辅助电源LDO:为服务器监控芯片、传感器等提供稳定低压供电(如3.3V/5V),萨瑞微电子的LDO系列具备低静态电流(<1μA)、高PSRR(电源抑制比)与快速瞬态响应,确保核心器件在复杂电源环境下稳定运行。

  负载开关MOS管推荐

  负载开关MOS管:用于电源系统的通断控制与负载隔离,支持大电流(10A-50A)快速切换,内置过流/过热保护,避免浪涌电流对后级电路的冲击,提升系统安全性。

  结论

  与AI算力共成长,定义电源新高度 在AI服务器向更高功率、更高效率演进的征程中,电源系统的每一次优化都依赖于器件级的技术突破。萨瑞微电子以“全电压覆盖、全技术兼容、全流程可控”的产品矩阵,为AI服务器电源提供了从输入整流到精准供电的完整解决方案,助力客户在算力竞赛中抢占先机。


("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
江西萨瑞微推出500V-800V 平面栅VDMOS
  平面栅VDMOS 详细介绍  平面栅VDMOS(Vertical Double-Diffused Metal-Oxide-Semiconductor)是一种特殊类型的MOSFET,主要用于功率电子应用。它结合了平面栅(Planar Gate)和垂直扩散技术,以提高功率处理能力和开关效率。  结构特点  垂直结构:  与传统平面MOSFET不同,VDMOS的主要特点是其垂直结构,即电流沿垂直方向流动。这种设计使得器件能处理更高的功率。  双重扩散(Double-Diffused):  VDMOS的源极和漏极区域通过双重扩散工艺形成。这种工艺允许在较低的电压下获得较高的电流承载能力。  平面栅(Planar Gate):  栅极结构与传统的平面MOSFET类似,使用一层氧化物隔离栅极与半导体之间的直接接触。平面栅设计有助于控制沟道的导电性。  沟道(Channel):  栅极施加电压时,会在源极和漏极之间的半导体材料表面形成一个沟道,这个沟道是垂直于平面栅的。  工作原理  开关特性:  当栅极电压高于阈值电压时,VDMOS形成导电沟道,允许电流从源极流向漏极。垂直结构使其在高电压下仍能保持高开关效率。  功率处理:  由于其垂直结构,VDMOS能够承受较高的电压和电流,适用于高功率应用,如电源管理和电动汽车驱动系统。  萨瑞产品优势  产品概述及特点  Product Overview and Features  萨瑞微提供500V-800V 平面栅VDMOS 。产品采用业界优良的平面技术、独特的器件设计,并结合萨瑞自有封装优势,雪崩耐量高, EMI兼容性好, 抗冲击能力强。  产品应用领域  应用于开关电源、照明、充电器、适配器、 DC-DC、吹风机等。  产品选型  应用拓扑图及应用案例  吹风机  充电器/适配器
2025-07-21 16:19 reading:269
江西萨瑞微:USB PD快充与Type-C接口静电防护,确保手机安全充电的关键技术
  随着智能手机的普及和快充技术的发展,USB Power Delivery (PD)快充和USB Type-C接口已成为现代移动设备的标配。然而,这些先进技术在带来便利的同时,也为设备的静电防护带来了新的挑战。今天,让我们深入探讨USB PD快充和Type-C接口的静电防护问题,以及如何通过精心设计来确保手机的安全充电。  USB PD快充技术  USB PD是一种先进的快速充电协议,能够在USB连接上提供高达100W的功率。它通过动态协商电压和电流,实现了更快、更高效的充电。  在日常使用USB PD快充充电器时,需要频繁地热插拔。如果其内部防护措施不到位的话,不仅会导致浪涌电流通过电源线进入内部电路损坏主控芯片,而且还容易引发输出瞬间大电流,影响充电稳定和安全,甚至导致受充设备损坏。不仅如此,USB PD快充充电器和快充移动电源产品在使用中,很容易与人体或其他带静电物体产生接触,而多数产品外壳的壳料与USB端口、呼吸灯、按键的连接处并不是无缝设计,外部静电很容易通过接缝进入主板中,导致产品损坏。  USB Type-C接口的 ESD 防护  大多数时候,我们都带着手机、智能手表、无线耳机等,这些设备都只能通过 USB 端口充电。使用电脑时,我们经常会使用USB 移动闪存驱动器(简称 U 盘)来传输文件。在车里给手机充电时,我们会使用标准的USB 端口。USB 在我们的日常生活中无处不在,参与我们的每一次数字体验的一部分。  Type-C接口凭借其可逆插拔和多功能性成为新一代USB标准,但其密集的引脚排列和双向性也增加了静电防护的难度。  USB PD快充与Type-C接口静电防护方案  01.USB PD 快充  想要生产出一款稳定安全的USB PD快充产品,其EOS防护/ESD静电保护措施必不可少。从物料成本、研发周期、生产流程等方面考虑,越来越多的厂商选择在USB PD快充接口内置浪涌和静电保护器件。那么,USB PD快充接口浪涌静电保护选用什么型号的TVS二极管呢?  从萨瑞微电子USB PD快充接口浪涌静电保护方案图一,电源供电口萨瑞微电子选用SES2431P4、SEU0501P1做防护,具体根据充电电压大小来选择。工作电压为5V、24V,具有低钳位、低漏电流的特点,适合大浪涌保护;DFN2020-3L、DFN1006-2L封装,减小USB PD接口安装空间;符合IEC 61000-4-2(静电)±30kV(空气)和±30kV(接触)标准。  在D+/D-数据接口和快充协议检测CC1/2接口静电防护中,萨瑞微电子推荐选用ESD二极管SEU0501P1,工作电压5V、峰值脉冲电流3A、DFN1006-2L封装;结电容低至0.5pF,保证高速数据信号的传输;符合IEC 61000-4-2(静电)±15kV(空气)和 ±10kV(接触)标准。  02.Type-C接口  保护 USB 接口不受静电放电 (ESD) 的影响十分重要。我们每天会数次在电子产品上插拔USB 数据线,在触碰或使用 USB 端口时,便可能遇到静电放电,这种情况十分常见。这些ESD 事件既可以由用户(人体)产生,也可以由数据线上存储的电荷产生。静电峰值电压可以达到数万伏,很容易损坏USB 收发器敏感的 CMOS 结构。因此,ESD防护对每个 USB 引脚都有着重要且必要的意义。  作为最新款连接器之一的USB Type-C,在物理尺寸以及与主机和外围设备的连接方式方面,都明显不同于以前的版本。USB Type-C采用可正反插设计,总共24 个引脚,上下各 12 个引脚,支持朝上或朝下插入。  SBU 和CC 引脚保护:由于USB Type-C 插头尺寸很小且引脚之间相隔很近,分立式单线瞬态电压抑制(TVS) 二极管非常适合保护端口免受 ESD 事件的影响。此外,分立式TVS 二极管对于电路设计师而言,可以更方便地布局和布线。参考图 引脚配置,我们可以看到 CC 引脚和SBU 引脚紧挨着 VBUS 引脚。VBUS引脚最高可达 24V,所以如果发生短路,CC引脚和 SBU 引脚则会暴露在24V 的电压下。在这种情况下,TVS 二极管的最低击穿电压不低于24V 才能保护 CC 和SBU 引脚。根据 IEC 61000-4-5的要求,萨瑞微电子的SES2431P4能够承受500V浪涌电压!IEC 61000-4-2的要求,在±24kV(空气放电)和±17kV(接触放电)之间的高 ESD,并且能够保持电路正常工作!  D+/D- 线路保护:D+/D-线路适用于 USB 2.0 接口,可以使用萨瑞微电子SEU0501P1、SEU0521P1S的进行保护。SEU0501P1属于 5V ESD,有着0.5pF 的最大结电容,采用的是DFN1006-2L超小型封装尺寸。  推荐使用萨瑞微ESD\TVS系列  以上是萨瑞微电子USB PD快充与Type-C接口静电防护方案,如有特殊需求,欢迎前来探讨。  结论  在追求更快充电速度和更高数据传输率的同时,我们不能忽视静电防护这一关键环节。通过精心的设计和选择合适的保护器件,我们可以在享受先进技术带来便利的同时,确保设备的可靠性和长期使用寿命。
2025-07-18 13:13 reading:431
江西萨瑞微:MOS 管在无人机电池中的关键应用
  无人机,全称为无人驾驶航空器(Unmanned Aerial Vehicle,简称UAV),是一种利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。无人机通过自主飞行控制系统或遥控设备,实现飞行和任务执行。  无人机的分类  1.按用途分类  军用无人机:用于侦察、监视、打击等军事任务。  民用无人机:用于农业、物流、测绘、影视拍摄等领域。  商业无人机:用于快递配送、巡检、安防等商业应用。  2.按飞行方式分类  固定翼无人机:类似传统飞机,依靠机翼产生升力,飞行速度快,航程远。  旋翼无人机:包括直升机型和多旋翼型,利用旋翼产生升力,具有悬停能力,适合低速、精细操作。  垂直起降无人机(VTOL):兼具固定翼和旋翼无人机的特点,能垂直起降,又具备高速巡航能力。  3.按控制方式分类  遥控无人机:由地面操作者通过遥控器实时控制。  自主无人机:根据预先设定的程序或通过传感器和算法实现自主飞行。  无人机的应用  无人机技术的快速发展,使其在多个领域得到广泛应用:农业领域、物流配送、测绘与遥感、影视与媒体、安防与巡检、应急救援、科学研究、军事应用等  无人机电池管理系统BMS  无人机的主要组成部分  机架、电机、螺旋桨、飞行控制器、电子调速器、电池与电源系统、遥控系统、天线、起落架、摄像头和云台(可选)、GPS模块(可选)  电池管理系统BMS  电池作为无人机的主要能源,其管理与维护对于确保无人机的性能、安全性和寿命至关重要。  什么是电池管理系统(BMS)  电池管理系统(BMS)是指用于监测、管理和保护电池组的电子系统。其主要功能是确保电池在安全、可靠和高效的条件下运行。对于无人机而言,BMS负责管理其动力电池,保障无人机的正常飞行和操作。  无人机BMS的组成结构  电池监测单元(BMU)  电压监测:实时测量每个电芯的电压,防止过充电或过放电。  温度监测:通过温度传感器监测电池的温度,防止过热或过冷。  电流监测:测量充放电电流,确保电流在安全范围内。  通信模块  有线通信接口:如CAN总线、I2C、SPI或UART,用于与飞控系统实时交换数据。  无线通信模块(可选):通过无线方式传输电池信息,方便远程监控。  功率控制模块  图中有二组MOSFET模块,分别用于控制放电、充电和预充电。  放电MOS:控制电池放电电流的通断。当需要放电时,控制信号使放电MOS导通。  充电MOS:控制电池的充电电流的通断。类似放电MOS,当需要充电时,控制信号使充电MOS导通。  预充电MOS:预充电是为了在充电开始时防止瞬时大电流对电池或电路造成损坏。它通过限流电阻慢慢对电池充电,直到电压达到安全范围。  推荐使用江西萨瑞微MOSFET系列  这二组MOS开关器件的选择需要根据系统的功率需求以及电池组的额定电流来进行设计。常见的参数包括:  导通电阻Rds(on):开关导通时的内阻,Rds(on)越小,损耗越低。  最大电流承受能力:MOS管的额定电流要大于最大充放电电流。  耐压值Vds:选择时需要考虑最大电池电压,MOS管的耐压值应大于电池组的总电压。  电流检测  电流采样电阻:放电路径中的采样电阻用于测量流经电池组的电流。通过测量电阻上的压降,可以得到当前电流值。电阻的选择需要考虑:  阻值:通常选择低阻值(如毫欧级)以减少功率损耗。  功率额定值:需要能够承受较大的电流,防止烧毁。  隔离电源模块  DC/DC隔离电源模块:由于BMS的不同电路部分工作在不同电压层次下,为了实现隔离,同时确保不同电压的稳定供电,通常需要使用DC/DC转换器。它的选择主要考虑以下参数:  输入电压范围:要支持电池组的电压范围。  输出电压和电流:要满足控制电路的供电需求。  控制单元(MCU)  数据处理:收集并处理来自监测单元的数据。  逻辑控制:根据电池状态执行相应的控制策略,如开启保护功能。  通信管理:与无人机飞控系统或地面站进行数据通信。  安全机制  保险丝:在极端过流情况下切断电路,提供最后的安全保障。  电气隔离:通过光耦合器或隔离变压器,实现电路间的电气隔离,提升系统安全性。  温度保护与检测  温度开关和MOSFET:用于监控电池组的温度,当温度过高时,它会触发保护机制,关闭充电或放电回路,防止电池过热损坏。温度开关一般选择能在设定的温度点上准确动作的器件,MOSFET则用于控制保护电路的通断  结论  无人机BMS通过硬件和软件的结合,对电池进行全面的监测和管理。其主要功能是确保电池的安全使用,延长电池寿命,提高无人机的续航能力和运行可靠性。在设计上,需要考虑无人机的特殊需求,如轻量化、体积小、功耗低和抗干扰能力强。同时,随着无人机技术的发展,BMS也在不断升级,集成更多智能化和网络化功能,支持远程监控、数据分析和云端管理。
2025-07-17 15:06 reading:301
江西萨瑞微:TWS行业产品应用方案
  如今,电子设备无处不在,从手机、电脑到汽车、工厂设备。但设备越来越小、功能越来越强,也更容易受到静电(ESD)、浪涌(Surge)、过压过流等问题的威胁。这些问题轻则导致设备失灵,重则损坏元器件甚至引发安全事故。  江西萨瑞微电子专注于电路保护和功率半导体领域,保护电子设备的安全和稳定。依靠技术积累和创新设计,萨瑞微提供各种高性能的防护器件和方案。无论是对微小的信号接口,还是对高功率的电源线路,都能提供有效的保护方案,帮助设备在各种复杂环境中可靠工作,寿命更长,用户体验更好。  本系列文章将介绍萨瑞微在14个重要行业中的具体应用方案。  本文将聚焦于TWS行业,介绍萨瑞微如何为无线耳机提供全面的静电浪涌防护方案。  关于萨瑞微电子  萨瑞微电子是一家专业从事半导体分立器件芯片设计、晶圆制造、封装测试与应用服务于一体的IDM模式的国家级高新技术企业。  公司成立于2014年,总部位于江西省南昌市赣江新区,在上海成立研发中心,在深圳成立销售中心,在南昌建立了35000平米制造基地。设有年产100万片4、5寸晶圆生产线以及年产300亿只分立器件封装产线。主营产品包括:保护器件(ESD、PTVS、PTSS、GDT);二三极管(BJT、Zener、SKY、Switching、Rectifier);MOSFET;模拟IC(LDO、OVP、锂电保护IC)等器件。  公司的产品广泛应用于通讯、安防、消费类电子、汽车电子、工业电子、医疗、仪器仪表等领域,是国内外一线品牌客户首选供应商。公司秉承“创新、成长、永续、责任”的经营理念,恪守“质量第一、客户满意;严进严出、绿色环保”的质量方针,成为国内领先的功率半导体与保护器件IDM公司。
2025-07-15 15:20 reading:278
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
model brand To snap up
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code