Littelfuse推出用于800V BEV系统应用的1300V A级沟槽式IGBT

Release time:2025-04-07
author:AMEYA360
source:Littelfuse
reading:866

  Littelfuse推出新型1300V A5A沟槽分立式IGBT,专为800V电动汽车(BEV)应用而设计。这些IGBT具有优化的集电极-发射极饱和电压(VCE(sat))、强大的短路能力和更大的电流范围。特别适用于PTC加热器、放电电路和预充电系统等应用,这些应用的重点是更高的浪涌电流和低导通压降,而不是高开关频率。

  背景

  汽车行业正积极拥抱可持续发展,其中电动汽车(BEV)因其高效率和零尾气排放而走在前列。2023年,BEV和插电式混合动力电动汽车(PHEV)的全球销量达到1360万辆,比2022年增长了31%。据预测,这一数字在未来几年还将加速增长。

  尽管有所增长,但挑战依然存在。过高的成本、过长的充电时间和有限的行驶里程继续阻碍着它的广泛应用。为了解决这些问题,制造商正在推出800V BEV系统。这种更高的电压架构可加快充电速度,大大减少充电时间和成本。

  硅技术并未消亡

  自电动汽车(EV)大规模应用的最初几年起,碳化硅(SiC)和其他宽带隙(WBG)技术就被认为是各种BEV子系统的理想候选材料。与硅相比,WBG材料具有更高的带隙和更大的击穿电压,因此可以实现更高的电流密度、更高的开关频率并降低总体损耗。这些优点使系统设计人员能够提高效率、缩小体积和减轻重量,特别是在允许高开关频率的应用中。因此,正如大量研究表明的那样,碳化硅已成为牵引逆变器的主流技术,但也有一些例外。

  硅制造工艺的成熟性、丰富的可选项、较低的成本、较简单的栅极驱动方法以及器件的可靠性,使得硅功率MOSFET和IGBT仍然是WBG技术的可行替代品。选择合适的器件取决于技术娴熟的设计人员,而作为供应商,我们有责任提供全面的选择,以满足不同的需求和偏好。

  在需要低开关频率的应用中,传导损耗和热设计的简易性都是至关重要的因素。WBG器件固有的高功率密度会给热管理带来挑战,而硅IGBT和MOSFET较大的芯片面积则有利于在这些情况下更轻松地进行热管理。

  电动汽车有复杂的电路,包括一些对半导体开关频率要求不高的子系统。

  应用

  下图展示了电动汽车中的通用电池分配单元(BDU)。

Littelfuse推出用于800V BEV系统应用的1300V A级沟槽式IGBT

  热管理PTC子系统、预充电电路和放电电路中的并不一定需要更高的开关频率。相反,它们需要低传导损耗、高浪涌电流能力半导体器件,以实现高可靠性。

  BEV的热管理

  传统内燃机(ICE)汽车本身会产生大量的热能浪费,而电动汽车则不同,它的效率要高得多。但这种效率的后果是,它们不会产生足够的废热来加热。

  电动汽车(EV)有两个与热管理相关的重要要求:

  电动汽车电池调节

  在寒冷环境条件下的车内空间加热

  在寒冷的环境温度下,PTC加热器和热泵可用于调节电池以达到最佳性能,产生的热量还可用于车内空间加热。PTC加热器的典型电路配置如下所示。

Littelfuse推出用于800V BEV系统应用的1300V A级沟槽式IGBT

  在这种应用中,IGBT的开关频率从几十赫兹到几百赫兹不等。低导通压降、可靠耐用(短路能力)和良好的半导体热性能是这一应用的关键因素。

  放电电路

  800V BEV系统中直流母线电容器的放电要求,高压电池电动汽车的关键安全协议要求在两种不同的运行情况下对直流母线电容器进行放电:

  正常运行关闭

  紧急情况,如碰撞后或严重故障检测

  这些放电机制是基本的安全功能,旨在降低车内人员和维修人员触电的风险,同时防止潜在的火灾危险。根据制造商的风险评估协议,这种应用通常被划分为汽车安全完整性B级(ASIL-B)。

  在800V BEV架构中,标称电池电压属于B类电压(60V 1500V)。根据ISO 6469-4安全规定,系统必须确保在紧急情况下快速降低电压。具体来说,在碰撞后车辆停止后的5秒内,总线电压必须降至并保持在直流60V以下。

  典型的放电电路如下图所示。

Littelfuse推出用于800V BEV系统应用的1300V A级沟槽式IGBT

  直流母线电容器可通过IGBT放电。需要时,打开IGBT,通过与IGBT串联的Rdis电阻器对电容器中的所有能量进行放电。具有高浪涌电流能力的可靠IGBT对于这种应用非常重要。

  预充电电路

  预充电电路通常用于电动汽车(EV),包括电池管理系统和车载充电器,以及电源和配电装置等工业应用。在电动汽车中,控制器不仅要处理高电容电气元件,还要通过控制电机的功率流来确保电机平稳高效地运行。预充电电路中的高压正负接触器可安全地连接和断开电容器的电源,防止启动时产生过大的浪涌电流。它们可确保充电受控,并在必要时通过隔离组件来维护系统安全。如果没有预充电电路,接触器在闭合过程中可能会发生熔化,导致短暂电弧和潜在损坏。

  其中一种预充电电路拓扑结构如下图所示。

Littelfuse推出用于800V BEV系统应用的1300V A级沟槽式IGBT

  在上述电路中,有两个大电流、高电压接触器S1和S2,以及一个单独的预充电开关T1和一个直流链路电容器C1,它们与负载(如牵引逆变器)并联。起初,两个大电流接触器S1和S2都处于断开状态,将高压蓄电池与负载的两个端子隔离。预充电开始时,开关T1(1300V A5A IGBT)与高压负极接触器S1一起闭合,使直流链路电容器充电至与蓄电池相同的电压。预充电过程结束后,开关T1打开,高压正极接触器S2关闭。由于直流链路电容器在高压正极和负极接触器闭合之前已经充电,因此不会产生明显的浪涌电流。1300V A5A IGBT具有很高的浪涌电流能力,因此非常适合这种应用。

  下图显示的是Littelfuse的BDU演示板,其中包含一个1300V A5A IGBT。

Littelfuse推出用于800V BEV系统应用的1300V A级沟槽式IGBT

  Littelfuse提供1300V A5A沟槽式IGBT

  为了满足800V BEV不断发展的需求,Littelfuse推出了全新系列的1300V沟槽分立式IGBT,如下图6所示。这些器件专为需要降低传导损耗(Pcond)、良好热性能和可靠性的应用而设计。该系列的A级IGBT具有优化的低集电极-发射极饱和电压(VCE(sat)),从而提高了低频开关性能。这些IGBT具有高达10µsec的短路可靠性。这一特性尤其适用于关键的BEV系统,如对车内空间加热和电池调节至关重要的PTC加热器。此外,这些IGBT还可用于预充电和放电电路。

  该系列包括集电极电流为15A、30A、55A和85A(外壳温度为110°C)的单通道IGBT。封装选项有SMD TO-263HV、TO-268HV和插件TO-247。与传统的三引脚TO-263和TO-268封装相比,SMD封装的HV版本具有更强的爬电和电气距离。

  性能和优势

  更高的击穿电压BVCES:1300V击穿电压专为800V BEV架构定制,适用于乘用车和重型卡车。1300V额定电压可为直流母线电压提供缓冲,直流母线电压会根据电池的充电状态而波动,然而1200V额定电压的器件可能会带来应用风险。

  1300V的器件电流范围更广:集电极电流范围为15A至85A(110°C时),可满足乘用车和重型车辆的各种应用要求。

  传导能量损耗最小化Econd:该系列是1300V IGBT中VCE(饱和)值最低的产品之一,有效地将传导损耗降至最低。这一特性不仅提高了效率,还缓解了热设计难题。

  短路能力tSC:1300V IGBT可处理长达10微秒的短路能力,因此适用于需要更高可靠性的汽车应用。

  封装:表面贴装分立封装包括TO-263HV、TO-268HV和插件TO-247。这些SMD封装的高压(HV)版本与标准3引脚版本相比,改善了爬电距离和电气距离。

  结束语

  随着汽车行业向更高电压架构的电动汽车转变,硅IGBT对于要求较低开关频率和最小传导损耗的应用仍然至关重要。Littelfuse的1300V A级沟槽式IGBT系列可满足800V BEV子系统的特殊需求,特别是在PTC加热器、放电电路和预充电应用中。这些IGBT具有低VCE(饱和)、短路能力和宽电流范围。同时提供SMD和插件封装,具有更强的爬电和电气距离,为设计提供了灵活性。


("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
Littelfuse推出快速切换、低输入电流紧凑型继电器CPC1056N
  Littelfuse宣布推出固态继电器CPC1056N,这是一款紧凑、高性能的60V、75mA 1-A型固态继电器(SSR),旨在满足下一代电子系统对快速、高效和节省空间的开关解决方案日益增长的需求。  CPC1056N固态继电器  CPC1056N采用无活动部件的固态设计,可提供安静、免维护的运行,并避免EMI/RFI干扰。该器件提供高输入输出隔离(1500VRMS)和3ms的快速切换速度。超低LED触发电流仅为0.5mA,支持低功耗TTL或CMOS逻辑直接驱动,无需额外电路。  CPC1056N采用紧凑的4引脚SOP封装,符合EN50130-4、UL1577和EN62368-1标准,是安防、医疗、工业自动化、智能电表和电动汽车充电基础设施应用的理想选择。  “CPC1056N的推出使我们的客户能够在不影响性能的情况下简化其设计,并且有助于开发高效、紧凑、可靠的电子系统。”Littelfuse产品营销经理Hugo Guzman表示,“通过在紧凑的封装中结合快速开关、超低输入电流和强大的隔离性,这种固态继电器解决了空间有限和能源敏感型应用的关键挑战。它能帮助工程师降低复杂性、提高能源效率,并加速产品在安防、工业自动化及电动汽车基础设施等广泛行业中的上市进程。  功能与特色  · 60V、75mA连续额定负载:适用于低压信号和控制电路;  · 低LED触发电流(0.5mA):允许与TTL/CMOS逻辑和低功耗微控制器直接连接;· 快速切换(3ms ton/toff):以最小的延迟支持快速应用;  · 1500VRMS输入到输出隔离:为敏感系统提供基本的电流隔离;  · 紧凑型SOP-4封装:在密集型设计中节省宝贵的电路板空间;· 静音固态操作:无机械磨损或可闻噪音;避免电磁干扰/射频干扰;· 符合行业标准:符合EN50130-4(安全)、UL1577和EN62368-1关于系统安全与电磁兼容性的标准。  市场与应用  · 安防系统:PIR运动检测器、数据信号、传感器控制;  · 医疗器械:患者和设备隔离,低噪声开关;  · 工业自动化:工厂控制、多路复用器和测试设备;  · 电动汽车充电基础设施:智能充电器中的信号切换和继电器逻辑结合Littelfuse保护解决方案;  · 智能水电表:控制电力消耗、水流和气体流量;  · 楼宇自动化和消费电子产品:智能家电和控制系统中的紧凑、高效开关。  CPC1056N扩展了Littelfuse固态继电器产品组合,补充了现有的光隔离和功率SSR,助力客户实现高可靠性、高能效及紧凑型设计目标。
2025-12-18 11:46 reading:93
Littelfuse推出采用SMPD-X封装的200V、480A超级结MOSFET
  Littelfuse宣布推出MMIX1T500N20X4 X4级超级结功率MOSFET。这款200V、480A N通道MOSFET的导通电阻RDS(on)极低,仅为1.99mΩ,可在功率密集型设计中实现卓越的导通效率、简化热管理并提高系统可靠性。  MMIX1T500N20X4采用高性能陶瓷基隔离SMPD-X封装,配备顶部散热结构以实现最佳热管理。与最先进的现有X4级MOSFET解决方案相比,该器件提供高达2倍的额定电流和低63%的RDS(on),使工程师能够将多个并联的低电流器件整合到单一的高电流解决方案中。  功能与特色:  · 200V阻断电压,1.99mΩ超低RDS(on),可将传导损耗降至最低;  · 高电流能力 (ID=480A) 减少了所需并联器件的数量;  · 紧凑型SMPD-X隔离封装,具有2500V隔离和改进的热阻 (Rth(j-c)=0.14°C/W) ;  · 低栅极电荷 (Qg=535nC) 降低了栅极驱动功率要求;· 采用顶部冷却式封装,简化热管理。  这些特性共同实现了更高的功率密度、更少的元件数量以及更简便的组装流程,有利于打造出更高效、更可靠且更具成本效益的系统设计。  应用:  该MMIX1T500N20X4非常适合:  · 直流负载开关;· 电池储能系统;  · 工业和过程电源;  · 工业充电基础设施;· 无人机和垂直起降飞行器 (VTOL) 平台。  “新款器件使设计人员能够将多个并联的低电流器件整合到一个高电流器件中,从而简化设计并减少元件数量。”Littelfuse产品营销分析师Antonio Quijano介绍道,“这有助于提高系统可靠性,简化栅极驱动器的实施,同时提高功率密度和PCB空间利用率。”  常见问答 (FAQ)  1. 与现有解决方案相比,MMIX1T500N20X4 MOSFET如何提升系统效率?  MMIX1T500N20X4提供1.99mΩ的超低RDS(on),额定电流为480A,可减少传导损耗和发热。用单个器件取代多个并联MOSFET,可简化设计、减少元件数量并提升整体系统效率。  2. 这款MOSFET最适合哪些应用场景?  该MOSFET非常适合对效率和可靠性要求严苛的大电流、中低压系统。典型应用包括直流负载开关、电池储能、工业电源、充电基础设施以及无人机或垂直起降飞行器的电力电子设备。  3. SMPD-X设计在散热和封装方面具有哪些优势?  高性能陶瓷基SMPD-X封装具有出色的热阻 (Rth(j-c)=0.14°C/W) 和2500VRMS隔离性能,可实现更高的功率密度和更安全的操作。其顶部冷却设计简化了热管理,减小了系统尺寸,并增强了长期可靠性。
2025-12-15 14:56 reading:318
Littelfuse荣获功率器件卓越奖
Littelfuse新型TMR开关提供超低功耗磁感应
  Littelfuse宣布推出两款下一代隧道磁阻(TMR)磁性开关:LF21112TMR全极开关以及LF11215TMR双极开关。这两款紧凑型器件具有出色的磁灵敏度、热稳定性和超低功耗,为智能电表、可穿戴设备、消费电子产品、工业自动化和家庭安全系统提供节能传感解决方案。LFxxxxxTMR开关  扩展TMR传感器产品组合  通过将TMR技术与超低功耗CMOS设计相结合,这两款开关相较于传统的霍尔效应传感器和旧式磁性开关技术,均展现出卓越的性能表现。这些产品的推出标志着Littelfuse磁传感器产品组合向电池敏感型和常开应用领域的重大拓展。  · LF21112TMR:公司首款全极TMR开关,能够同时检测南北磁极,使磁体放置更灵活,并简化了设计。典型电流消耗仅为200nA,是超低功耗应用的理想选择。  · LF11215TMR:一款双极数字TMR开关,以1.5μA的超低电流消耗和仅17高斯的高磁灵敏度提供高速、精确检测。在需要定向检测的更复杂传感应用中表现出色。  双极与全极有何区别?  全极开关(如LF21112TMR)在暴露于任一磁极时都会触发响应,非常适合空间受限的设计和难以控制磁体对准的应用。双极开关(如LF11215TMR)由特定磁极(通常为北极)触发,并由相反磁极(南极)复位。这种方向灵敏度对于需要旋转或方向感应的应用非常有利。  主要功能与特色  两种器件均采用紧凑型SOT23-3封装,并具有以下特点:  · TMR技术可实现更高的灵敏度和热稳定性;  · 推挽式CMOS输出,提供干净的数字信号;  · 施密特触发器输入可降低噪声并提高可靠性;  · 出色的抗外磁干扰能力;· 宽工作电压:1.8V-5.0V。  这些开关可帮助工程师设计出更小、更智能、更节能的产品,同时降低机械复杂性并延长电池寿命。  市场与应用  这些创新型开关非常适用于:  · 智能水电表(煤气、水、热);· 电池供电的可穿戴设备和物联网传感器;  · 电器和电动工具的盖板与盖罩检测;  · 家庭和楼宇自动化中的篡改检测;· 轻型工业和机器人设备中的旋转和线性位置传感。  “LF21112TMR和LF11215TMR扩展了Littelfuse TMR传感器产品组合,这些解决方案致力于应对当今紧凑型、电池供电和常开设备中的关键设计挑战。”Littelfuse全球产品经理Julius Venckus表示,“两款开关都集成了隧道磁阻技术和超低功耗CMOS设计,在业界领先的电流水平下实现卓越的磁灵敏度与热稳定性 — 全极性检测仅为200nA,双极性检测则为1.5μA。这些创新使工程师能够延长电池寿命,简化磁对准,并确保在嘈杂、热要求苛刻的环境下进行可靠传感。从智能电表和可穿戴设备到工厂自动化和家庭安全系统,无论您是需要灵活的电极检测还是精确的方向切换,这些TMR解决方案都能提供设计更智能、更持久的应用所需的性能和效率。”  常见问答:TMR磁性开关  1. 与霍尔效应传感器相比,TMR开关有何优势?  与霍尔效应传感器相比,隧道磁阻(TMR)开关具有更高的磁灵敏度,功耗也大大降低。这种组合可延长电池寿命,并确保在智能电表和可穿戴设备等紧凑型常开设计中实现可靠的传感性能。  2. 全极和双极TMR开关有何不同?  全极开关(如LF21112TMR)可响应任一磁极,从而简化对准并带来更大的设计灵活性。与LF11215TMR一样,双极开关由一个电极激活,相反电极复位,从而实现精确的方向或旋转感应。  3. 是什么让这些开关成为电池供电和物联网设备的理想选择?  其超低功耗(全极仅为200nA,双极仅为1.5μA)使其成为能量敏感型应用的理想选择。该器件采用集成式CMOS设计,可保持高响应能力,同时延长可穿戴设备、传感器和计量设备的产品使用寿命。  4. LF21112TMR和LF11215TMR最适合哪些应用?  这些开关非常适合电池供电应用和空间受限的环境,例如智能水电表、可穿戴设备、物联网设备、家电和自动化系统。其紧凑的SOT23-3封装、1.8-5.0V的宽工作电压范围和强大的抗磁干扰能力,均有助于轻松集成到现代紧凑型电子产品中。  5. 这些TMR开关能否取代现有设计中的霍尔效应传感器?  可以。这两种型号通常都可以直接集成到现有的霍尔效应开关电路中,无需进行重大重新设计。推挽式CMOS输出和标准的SOT23-3尺寸简化了替代过程,而宽电压范围和增强的灵敏度可帮助工程师提升性能并降低功耗。TMR的激活方向在“X”轴上,而霍尔效应则是在“Z”轴上。
2025-11-25 16:39 reading:401
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
model brand To snap up
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code