High-voltage half-bridge driver NSD2622N from NOVOSENSE: A high-reliability, high-integration solution tailored for E-mode GaN

发布时间:2025-08-07 14:08
作者:AMEYA360
来源:NOVOSENSE
阅读量:227

  NOVOSENSE has launched NSD2622N, a high-voltage half-bridge driver IC specifically designed for enhancement-mode GaN (E-mode GaN). This chip integrates positive/negative voltage regulation circuits, supports bootstrap supply, and provides high dv/dt immunity and robust driving capability. It significantly simplifies GaN driver circuit design while enhancing system reliability and reducing overall costs.

High-voltage half-bridge driver NSD2622N from NOVOSENSE: A high-reliability, high-integration solution tailored for E-mode GaN

  Application background

  In recent years, gallium nitride high-electron-mobility transistors (GaN HEMTs) are gaining increasingly widespread adoption in high-voltage, high-power applications, such as AI data center power supplies, microinverters, and on-board chargers (OBCs). With significant advantages of high switching frequency and low switching losses, GaN HEMTs enable substantially improved power density in power supply systems, noticeably optimized energy efficiency, and significantly reduced system costs.

  However, GaN devices still face challenges in real-world applications. For instance, E-mode GaN devices exhibit low turn-on thresholds. In high-voltage and high-power applications, particularly in hard-switching operation mode, poorly designed driver circuits can lead to false triggering due to crosstalk during high-frequency high-speed switching. Additionally, the complexity of compatible driver circuit designs raises the barrier to GaN device adoption.

  To accelerate widespread GaN adoption, leading GaN manufacturers at home and abroad have introduced some power ICs with integrated drivers, especially MOSFET-LIKE GaN power devices in Si-MOSFET-compatible packages, which somewhat reduce GaN driver circuit design complexity. However, driver-integrated GaN solutions have limitations: they struggle to meet customized design requirements and are unsuitable for applications adopting multi-device parallel or bidirectional switching topologies. Therefore, discrete GaN devices with dedicated drivers remain essential for many applications. To address the above-mentioned limitations, NOVOSENSE has developed NSD2622N – a driver IC tailored to E-mode GaN, aiming to deliver high-performance, high-reliability, and cost-competitive driving solutions for high-voltage and high-power GaN applications.

  Product features

  NSD2622N is a high-voltage half-bridge driver IC specifically designed for E-mode GaN. It integrates a voltage regulation circuit capable of generating a configurable stable positive voltage from 5V to 6.5V to ensure reliable GaN driving, as well as a charge pump circuit that produces a fixed -2.5V negative voltage for reliable GaN turn-off. By integrating both positive and negative voltage regulation circuits, the chip supports high-side output with bootstrap supply.

  NSD2622N leverages NOVOSENSE’s proven capacitive isolation technology. Its high-side driver withstands a voltage range of -700V to +700V and a minimum SW dv/dt immunity of 200V/ns. Meanwhile, low propagation delay and tight delay matching between high-side and low-side outputs make it a perfect match for the high-frequency, high-speed switching requirements of GaN devices. Additionally, NSD2622N delivers 2A (source) and -4A (sink) peak drive currents on both high-side and low-side outputs, meeting the requirements of high-speed GaN driving and multi-device parallel configurations. The IC also includes an integrated 5V LDO that can power circuits like digital isolators in applications requiring isolation.

  Key specifications of NSD2622N

  SW voltage range: -700V to 700V

  SW dv/dt immunity: > 200V/ns

  Wide supply voltage range: 5V-15V

  Adjustable positive output voltage range: 5V-6.5V

  Built-in negative output voltage: -2.5V

  Peak drive current: 2A (source) / 4A (sink)

  Minimum input pulse width (typical): 10ns

  Input-to-output propagation delay (typical): 38ns

  Pulse width distortion (typical): 5ns

  Rise time (1nF load, typical): 6.5ns

  Fall time (1nF load, typical): 6.5ns

  Built-in dead time (typical): 20ns

  Bootstrap supply for high-side output

  Integrated 5V LDO for digital isolator supply

  Undervoltage lockout (UVLO) and overtemperature protection

  Operating temperature range: -40°C to +125°C

High-voltage half-bridge driver NSD2622N from NOVOSENSE: A high-reliability, high-integration solution tailored for E-mode GaN

Functional block diagram of NSD2622N

  Eliminating false triggering risks and providing more stable drive voltage

  Compared to conventional Si MOSFET driver solutions, the key challenge in E-mode GaN driver circuit design lies in providing appropriate, stable and reliable positive/negative bias voltages. This is because that E-mode GaN typically requires a 5V-6V turn-on voltage, while its threshold voltage is as low as 1V, or even lower at high temperatures, necessitating negative turn-off voltage to prevent false triggering. To address this challenge, two common drive solutions are used for E-mode GaN: resistive-capacitive (RC) voltage division drive and direct drive.

  1. RC voltage division drive

  This approach utilizes standard Si MOSFET driver ICs. As shown in the diagram, during turn-on, the parallel combination of Cc and Ra is connected with Rb in series, dividing the driver supply voltage (e.g., 10V) to provide a 6V gate drive voltage for the GaN device, with Dz1 clamping the positive voltage. During turn-off, Cc discharges to provide negative turn-off voltage for the GaN device, with Dz2 clamping the negative voltage.

High-voltage half-bridge driver NSD2622N from NOVOSENSE: A high-reliability, high-integration solution tailored for E-mode GaN

RC voltage division drive solution

  Although the RC voltage division circuit does not require sophisticated driver ICs, it introduces additional parasitic inductance due to a large number of components involved, which can impact GaN’s switching performance at high frequencies. Moreover, since the negative turn-off voltage relies on discharge from capacitor Cc, the negative turn-off voltage proves unreliable.

  As shown in the half-bridge demo board test waveforms, during the startup phase (T1 in the waveform), the absence of initial charge on Cc results in failure to establish negative voltage and thus zero-voltage turn-off; during the negative turn-off period following the driver’s signal transmission (T2), the negative voltage amplitude fluctuates with capacitor discharge; and during the prolonged turn-off period (T3), the capacitor cannot sustain negative voltage, eventually discharging to zero. Consequently, RC voltage division circuits are generally limited to medium/low power applications with relatively lower reliability requirements, and are proved unsuitable for high-power systems.

High-voltage half-bridge driver NSD2622N from NOVOSENSE: A high-reliability, high-integration solution tailored for E-mode GaN

Waveform of E-mode GaN using RC voltage division drive circuit

(CH2: Drive supply voltage; CH3: GaN gate-source voltage)

  2. Direct drive

  The direct drive solution requires selecting a driver IC with an appropriate undervoltage-lockout (UVLO) threshold, for example, NSI6602VD, which is specifically designed for E-mode GaN with a 4V UVLO threshold. When paired with an external positive/negative voltage regulation circuit, it can directly drive E-mode GaN devices. Below is a typical application circuit.

High-voltage half-bridge driver NSD2622N from NOVOSENSE: A high-reliability, high-integration solution tailored for E-mode GaN

NSI6602VD driver circuit

High-voltage half-bridge driver NSD2622N from NOVOSENSE: A high-reliability, high-integration solution tailored for E-mode GaN

Positive and negative voltage regulation circuits

  This direct drive solution can provide reliable negative turn-off voltage for GaN under all operating conditions, when the auxiliary power supply is functioning normally. As a result, this approach is widely adopted in various high-voltage, high-power GaN applications.

  The next-generation GaN driver NSD2622N from NOVOSENSE, integrates the positive/negative voltage regulation circuits directly into the chip. As shown in the half-bridge demo board test waveforms below, NSD2622N maintains consistent negative turn-off voltage amplitude and duration regardless of operating conditions. Specifically, during startup (T1 in the waveform), the negative voltage is established even before the driver sends signals; during GaN turn-off (T2), the negative voltage remains stable in amplitude; during extended periods without driver signals (T3), the negative voltage continues to stay reliably stable.

High-voltage half-bridge driver NSD2622N from NOVOSENSE: A high-reliability, high-integration solution tailored for E-mode GaN

Waveforms of E-mode GaN using NSD2622N driver circuit

(CH2: Low-side GaN Vds, CH3: Low-side GaN Vgs)

  Simplified circuit design and reduced system costs

  NSD2622N can provide stable and reliable direct drive for GaN devices. More importantly, by integrating positive/negative voltage regulators, it significantly reduces external component count. By adopting the bootstrap supply architecture, NSD2622N greatly simplifies driver power circuit design and lowers overall system costs.

  Taking a 3kW power supply unit (PSU) as an example, assuming both phases of the interleaved TTP PFC and full-bridge LLC use GaN devices, a complexity comparison between two direct-drive solutions is given below:

  When using the NSI6602VD driver solution, each half-bridge high-side driver requires an independent isolated power supply in conjunction with corresponding isolation and positive/negative voltage regulation circuits. This means complex auxiliary power supply design for isolation. Given the high power quality requirements of GaN driving and the fact that the main power paths of the PFC and LLC stages are typically placed on separate boards, a two-stage auxiliary power architecture is often necessary. In this configuration, the first stage typically employs a device with wide input voltage range like flyback converter, to generate regulated voltage rails. The second stage may use an open-loop full-bridge topology to provide isolated power and further regulate the power to generate the required positive and negative supply voltages for NSI6602VD. Below is a typical power architecture for such a driver solution.

High-voltage half-bridge driver NSD2622N from NOVOSENSE: A high-reliability, high-integration solution tailored for E-mode GaN

Typical power architecture for NSI6602VD driver solution

  The NSD2622N driver solution significantly simplifies auxiliary power design through its bootstrap supply capability. Below is a typical power architecture for this approach.

High-voltage half-bridge driver NSD2622N from NOVOSENSE: A high-reliability, high-integration solution tailored for E-mode GaN

Typical power architecture for NSD2622N driver solution

  A detailed comparison of bill-of-materials (BOM) for driver and power supply circuits between the above-mentioned two GaN direct-drive solutions is provided in the table below. It can be seen that the NSD2622N solution utilizing bootstrap supply, dramatically reduces total component count compared to the NSI6602VD’s isolated power supply approach, resulting in substantially lower system costs. Even in applications requiring isolated power supply, NSD2622N maintains its competitive edge - its integrated positive/negative voltage regulators enable a more simplified peripheral circuit relative to the NSI6602VD solution, leading to fewer components and lower system costs.

High-voltage half-bridge driver NSD2622N from NOVOSENSE: A high-reliability, high-integration solution tailored for E-mode GaN

BOM comparison between two GaN direct drive solutions

  Versatile GaN compatibility and flexible drive voltage adjustment

  The E-mode GaN driver IC NSD2622N from NOVOSENSE delivers not only superior performance but also broad compatibility across various GaN devices from different brands, of different types (including both voltage-mode and current-mode), and at different voltage ratings. For instance, the output voltage of NSD2622N can be set between 5V to 6.5V by adjusting feedback resistors. This enables selection of the most appropriate driving voltage for any GaN device by simply adjusting the feedback resistors to match specific GaN characteristics, allowing GaN devices from different brands to operate at their individual peak performance points.

  In addition, NSD2622N features a minimum dv/dt immunity of 200V/ns on the switching node (SW), enhancing the upper limit of GaN switching speed. The adoption of a more compact QFN package and the design of independent turn-on and turn-off output pins further reduce the driver loop parasitic inductance. The over-temperature protection ensures safer GaN applications.

  NOVOSENSE also offers single-channel GaN driver IC NSD2012N. Featuring 3mm*3mm QFN package and adjustable negative voltage capability, it can meet more personalized application requirements.


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
NOVOSENSE Launches High-Performance 2-Wire Hall Switch MT72xx Series: Compact Design with System-Level Reliability
  NOVOSENSE Microelectronics ("NOVOSENSE") has launched the MT72xx series, 2-wire current output Hall switches. The switches feature superior EMC performance, multiple sensing polarity options, and highly integrated design, achieving ASIL-A functional safety certification and full compliance with AEC-Q100 Grade 0 standards. Designed for long-wiring scenarios in vehicle body electronics and domain controller systems, the MT72xx series provides optimized solutions for seatbelt buckle detection, window lift motor control, and other automotive applications.  Addressing Long Wiring Harness Challenges in Automotive  With rapid advancement of automotive intelligence and electrification, increasingly complex vehicle body functions and highly integrated domain controllers have significantly extended wiring harnesses between sensors and control units. This introduces critical challenges including elevated signal interference risks, increased costs, and compromised system reliability.  NOVOSENSE's MT72xx series delivers robust signal integrity while effectively reducing wiring complexity and lowering harness costs. Designed for long-wiring scenarios such as door lock detection, anti-pinch window control, power tailgate position sensing, seat adjustment, and seatbelt buckle detection, these devices provide stable current output with superior anti-interference capabilities, maintaining signal reliability even in extended wiring conditions.  High Integration & Robustness for Automotive-Grade Standards  Engineered for harsh automotive environments with strong EMI interference, the MT72xx series integrates a 100nF(only TO92S package)capacitor to enhance EMC/ESD performance, simplify peripheral configuration, and optimize BOM space, enabling flexible system architecture design. Compliant with AEC-Q100 Grade 0, the devices ensure long-term stability under extreme high-temperature conditions.  Featuring multiple sensing polarity options (unipolar, omnipolar, latch) and adjustable sensitivity thresholds, the MT72xx series offers design flexibility to accommodate diverse magnet solutions and vehicle architectures, streamlining development and debugging processes.  Comprehensive Resources to Accelerate Time-to-Market  To expedite customer development, NOVOSENSEN provides dedicated MT72xx demo boards and magnetic simulation services. These resources enable rapid device validation, magnet solution matching, and cost-effective debugging, significantly shortening product deployment cycles.
2025-07-14 14:25 阅读量:439
NOVOSENSE introduces NSDA6934-Q1: Automotive-grade Class D audio amplifier with digital input
  NOVOSENSE recently announced the launch of the NSDA6934-Q1, a digital-input automotive-grade Class D audio amplifier designed for vehicle audio systems. Featuring four-channel audio output with up to 75W per channel, it supports low-latency mode and sampling rates up to 192kHz. The amplifier offers flexible switching frequencies, multiple modulation options, and comprehensive protection features, making it highly adaptable to various automotive audio system designs.  Class D amplifiers: Driving the evolution of automotive audio  As automotive electronics continue to advance, Class D amplifiers have emerged as the preferred choice for vehicle audio systems due to their high efficiency, low heat dissipation, and compact form factor. These amplifiers not only meet modern vehicles’ stringent energy efficiency demands but also enhance audio quality and power output within limited space, playing a key role in the evolution of automotive audio technology.  Optimized Low-Latency Mode: Reducing Path Delay by Over 70%  In automotive audio systems, amplifiers boost signals from the DSP (Digital Signal Processor) before transmitting them to the speakers. Traditional amplifiers can contribute to over 30% of total signal transmission latency, impacting system performance.  The NSDA6934-Q1 features a unique low-latency mode that reduces transmission path delay by more than 70%, granting the DSP additional time for signal processing. This reduces DSP resource demands and enhances the effectiveness of RNC (Road Noise Cancellation). Additionally, the amplifier supports up to 192kHz sampling rates, delivering high-resolution audio with enhanced clarity and detail for an immersive in-car listening experience.  Flexible Configurations to Suit Various Designs  The NSDA6934-Q1 provides a wide range of switching frequencies and modulation options, allowing system engineers to optimize efficiency and size.  Adjustable Switching Frequency (384kHz – 2.1MHz)  At 384kHz, the amplifier achieves up to 93% efficiency, ideal for applications prioritizing power savings, though it requires a 10μH inductor for operation.  At 2.1MHz, the amplifier supports a compact 3.3μH inductor, making it suitable for space-constrained smart cockpit integration.  Selectable Modulation Modes (BD Mode & 1SPW Mode)  BD Mode (50% duty cycle) ensures superior linearity at high power levels, making it ideal for high-output applications.  1SPW Mode (20% duty cycle) reduces conduction losses, improving efficiency in low-power scenarios  Additionally, the NSDA6934-Q1 supports TDM16 data format, ensuring seamless integration with mainstream audio interfaces. With eight selectable I2C addresses, it prevents communication conflicts among peripheral devices. It also features integrated PVDD voltage monitoring, eliminating the need for external resistor dividers and simplifying system wiring and debugging.  Enhanced EMC Performance & Comprehensive Protection  The NSDA6934-Q1 incorporates multiple EMC optimization techniques, including slew rate control, phase control, and three spread-spectrum modes (triangular wave, random spread, hybrid spread), helping customers pass system-level EMC tests efficiently.For system reliability, the amplifier integrates multiple intelligent protection and diagnostic functions, including:  • I2C watchdog for real-time bus monitoring.  • Thermal protection, which automatically reduces gain under high-temperature conditions.  • AC/DC diagnostics for real-time power supply monitoring.  • Comprehensive protection suite, including temperature alarms, over-temperature shutdown, undervoltage, overvoltage, and overcurrent protection, ensuring robust system stability.
2025-04-24 17:19 阅读量:640
Supporting up to 1500W motor drive, NSUC1602 from NOVOSENSE easily addresses high current challenges
  NOVOSENSE announced the launch of NSUC1602, a high-integration embedded motor control IC, following its introduction of NSUC1610, a small motor driver SoC for automotive applications in early 2023. Compared to the single-chip NSUC1610 that integrates LIN and MOS power stages, NSUC1602 as a SoC, supports an external independent power MOSFET design. This innovative approach enables it to effortlessly address applications requiring higher current.  In addition, NSUC1602 integrates three half-bridge pre-drivers, expanding the motor control power range to 20W-1,500W. This enhancement not only further optimizes the control performance of BLDC motors, but also better meets the requirements of applications with higher power output. In the realm of xEV, thermal management systems are particularly complex and crucial for ensuring overall vehicle performance. These systems are responsible for managing the temperatures of electric motors, power electronics, and battery, while ensuring optimal comfort for passengers in the cabin. An efficient thermal management system not only helps extend battery life, but also prevents the risks of thermal runaway caused by overheat, thereby safeguarding safe operation of xEVs.  In the realm of xEV, thermal management systems are particularly complex and crucial for ensuring overall vehicle performance. These systems are responsible for managing the temperatures of electric motors, power electronics, and battery, while ensuring optimal comfort for passengers in the cabin. An efficient thermal management system not only helps extend battery life, but also prevents the risks of thermal runaway caused by overheat, thereby safeguarding safe operation of xEVs.  To achieve these objectives, thermal management systems rely heavily on precise control of various actuators, such as electric compressor, electronic water pump, oil pump, fan motors, valves, and HVAC control modules. The motors driving these actuators typically need high power output to ensure stable and precise performance under a wide range of operating conditions, thereby meeting the strict requirements of efficient and accurate control for xEV thermal management systems.  NSUC1602, a highly integrated embedded motor control IC from NOVOSENSE, plays a pivotal role in managing key actuators in xEVs with its exceptional integration features and powerful motor control algorithms. This IC integrates an ARM® Cortex®-M3 core and efficient three-phase pre-driver circuits, and supports more advanced and complex motor control algorithms, such as FOC sensored or sensorless vector control. These advanced algorithms significantly enhance the precision and efficiency of temperature management for motors and electronic devices, providing robust technical support for intelligent three-phase brushless DC motor control applications, including automotive electronic cooling fans and electronic water pumps. Additionally, NSUC1602 incorporates a series of optimization designs to significantly improve overall system efficiency, ensuring stable performance under high-load operating conditions.  NSUC1602 meets the reliability requirements of AEC-Q100 Grade 0, and operates stably at extreme temperatures (up to 175°C wafer junction temperature). This SoC comes with further enhanced built-in diagnostics and protection functions that ensure high system reliability and comprehensive security protection for users.  While maintaining a highly integrated design, NSUC1602 also has an optimized power management solution. The LIN port supports ±40V reverse voltage protection, and the BVDD pin supports a withstand voltage range from -0.3V to 40V, allowing direct power supply from a 12V automotive battery. This helps simplify system design and notably reduce development costs.  NSUC1602 demonstrates extensive applicability for diverse applications. With superior motor control performance, NSUC1602 can play a crucial role in a wide range of BLDC and BDC applications requiring precise temperature control and efficient power transmission, such as automotive electronic water pumps, cooling fans, air conditioning blowers, seat adjustment, sunroof control, or tailgate control. Its optimized power management solution ensures that these devices achieve significant energy consumption reduction and substantial service life extension, while providing exceptional performance.
2025-04-07 13:29 阅读量:811
NOVOSENSE Achieves ISO 26262 ASIL D
  NOVOSENSE Microelectronics today announced it has earned the ISO 26262 ASIL D "Defined-Practiced" certification from TÜV Rheinland, a significant milestone validating the company's robust functional safety management system.  This achievement confirms NOVOSENSE's successful implementation of functional safety practices in critical automotive applications, including ABS wheel speed sensors and isolated gate drivers. Moving from the "Managed" (system establishment) to the "Defined-Practiced" (system implementation) level signifies a major leap in NOVOSENSE's functional safety capabilities and underscores the maturity of its research and development (R&D) and quality management systems.  Transitioning from Compliance to Real-World Application  Since securing the ISO 26262 ASIL D "Managed" certification in December 2021, NOVOSENSE has focused on refining its R&D processes and strengthening its functional safety management. TÜV Rheinland's comprehensive audit assessed various aspects, including functional safety lifecycle management, safety culture, and R&D proficiency. The review specifically examined the practical application of these systems in NOVOSENSE's NSM41xx series wheel speed sensors and the NSI6911 isolated gate driver, confirming the company's systems meet the stringent "Defined-Practiced" standard.  Key Product Highlights:  • NSM41xx Series ABS Wheel Speed Sensors: These AMR-based sensors, designed to ISO 26262 ASIL B (D) standards, support ASIL D system-level functional safety. They offer precise wheel speed monitoring for critical systems like ABS, ESP, and EPS, ensuring reliability in demanding conditions. These are currently in mass production.  • NSI6911 Isolated Gate Driver: Designed for new energy vehicle (NEV) main drives, this ASIL D-compliant driver features a 12-bit high-precision ADC, advanced diagnostics, and an SPI programmable interface. It provides robust driving and protection for SiC MOSFETs and IGBTs, ensuring NEV safety. Samples are now available.  Commitment to Automotive Excellence  Automotive applications remain a core focus for NOVOSENSE, driving the company to uphold its "Robust & Reliable" values. Building strong functional safety capabilities is a strategic priority, supported by a comprehensive ISO 26262:2018-compliant development process and a rigorous automotive-grade quality management system.  As of 2024, NOVOSENSE has shipped over 500 million automotive chips, with automotive business representing more than 35% of its total revenue. Its products are trusted by leading NEV OEMs and Tier-1 suppliers.  NOVOSENSE aims to be a preferred chip supplier in the global automotive supply chain. Through its strong R&D, reliable quality assurance, proven mass production, and flexible customization, NOVOSENSE delivers high-quality, high-reliability, and high-performance analog and mixed-signal chips, along with comprehensive system-level solutions.
2025-03-20 09:57 阅读量:801
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码