ROHM and TSMC Launch Strategic <span style='color:red'>Gallium</span> Nitride Technology Collaboration for Automotive Industry
  ROHM Co., Ltd. (ROHM) announced today that ROHM and TSMC have entered a strategic partnership on development and volume production of gallium nitride (GaN) power devices for electric vehicle applications.  The partnership will integrate ROHM's device development technology with TSMC's industry-leading GaN-on-silicon process technology to meet the growing demand for superior high-voltage and high-frequency properties over silicon for power devices.  GaN power devices are currently used in consumer and industrial applications such as AC adapters and server power supplies. TSMC, a leader in sustainability and green manufacturing, supports GaN technology for its potential environmental benefits in automotive applications, such as on-board chargers and inverters for electric vehicles (EVs).  The partnership builds on ROHM and TSMC’s history of collaboration in GaN power devices. In 2023, ROHM adopted TSMC’s 650V GaN high-electron mobility transistors (HEMT), whose process is increasingly being used in consumer and industrial devices as part of ROHM's EcoGaN™ series, including the 45W AC adapter (fast charger) "C4 Duo" produced by Innergie, a brand of Delta Electronics, Inc.  "GaN devices, capable of high-frequency operation, are highly anticipated for their contribution to miniaturization and energy savings, which can help achieve a decarbonized society. Reliable partners are crucial for implementing these innovations in society, and we are pleased to collaborate with TSMC, which possesses world-leading advanced manufacturing technology" said Katsumi Azuma, Member of the Board and Senior Managing Executive Officer at ROHM. “In addition to this partnership, by providing user-friendly GaN solutions that include control ICs to maximize GaN performance, we aim to promote the adoption of GaN in the automotive industry."  “As we move forward with the next generations of our GaN process technology, TSMC and ROHM are extending our partnership to the development and production of GaN power devices for automotive applications,” said Chien-Hsin Lee, Senior Director of Specialty Technology Business Development at TSMC. “By combining TSMC's expertise in semiconductor manufacturing with ROHM's proficiency in power device design, we strive to push the boundaries of GaN technology and its implementation for EVs.”  About TSMC  TSMC pioneered the pure-play foundry business model when it was founded in 1987, and has been the world’s leading dedicated semiconductor foundry ever since. The Company supports a thriving ecosystem of global customers and partners with the industry’s leading process technologies and portfolio of design enablement solutions to unleash innovation for the global semiconductor industry. With global operations spanning Asia, Europe, and North America, TSMC serves as a committed corporate citizen around the world.          TSMC deployed 288 distinct process technologies, and manufactured 11,895 products for 528 customers in 2023 by providing broadest range of advanced, specialty and advanced packaging technology services. The Company is headquartered in Hsinchu, Taiwan.  EcoGaN™ is a trademark or registered trademark of ROHM Co., Ltd.
Key word:
Release time:2025-04-02 15:36 reading:312 Continue reading>>
What are the uses of gallium and germanium as semiconductor materials
  On July 3, according to the latest news from the Ministry of Commerce, for the purpose of safeguarding national security and interests, with the approval of the State Council, China decided to implement export controls on two key metals, gallium and germanium, starting from August 1.  As we all know, gallium and germanium are very important materials in semiconductor applications. But actually, what are the uses of gallium and germanium as semiconductor materials? In this article, we will focus on gallium and germanium.  What is Gallium?  Gallium is one of the members of the strategic mineral family. It is a gray-blue or silver-white metal with atomic number 31, element symbol Ga, and atomic weight of 69.723. Gallium has a low melting point but a high boiling point. Pure liquid gallium has a significant supercooling tendency, and is easily oxidized in air to form an oxide film.  The atomic structure of gallium includes 31 protons and electrons, and a corresponding number of neutrons. In chemical reactions, gallium atoms usually exist in a trivalent state, that is, they lose three electrons to form Ga3+ ions.  Industrial uses of galliumManufacturing semiconductor gallium nitride, gallium arsenide, gallium phosphide, germanium semiconductor doping element;  Pure gallium and low melting alloy can be used as heat exchange medium for nuclear reaction;  Filling material for high temperature thermometer;  Catalyst for diesterization in organic reaction.  Gallium’s industrial applications are primitive, although its unique properties may have many applications. Liquid gallium’s wide temperature range and its low vapor pressure make it useful in pyrometers and pyrometers. Gallium compounds, especially gallium arsenide, have attracted more and more attention in the electronics industry. Precise world gallium production data are not available, but production in neighboring regions is only 20 tons/year.  Applications of gallium  1.Semiconductor industry  Gallium plays an important role in the semiconductor industry. It is used in the manufacture of high-speed electronic devices, optoelectronic devices and solar cells. Gallium-based semiconductor materials, such as gallium arsenide (GaAs) and gallium nitride (GaN), have excellent electrical properties and high-temperature characteristics, which are suitable for the manufacture of high-frequency electronic devices and high-power electronic devices.  2. LED lighting  Gallium compounds are widely used in the manufacture of LEDs (Light Emitting Diodes). Gallium-based LEDs have the advantages of high efficiency, long life, and energy saving, and are widely used in indoor and outdoor lighting, electronic displays, and automotive lighting.  3.Alloy preparation  Gallium can form alloys with other metals to improve its characteristics and performance. For example, gallium alloys are used to make low-melting alloys such as gallium-indium alloy (often used in thermometers) and gallium-bismuth alloy (often used in fire alarm devices).  What is Germanium?  Germanium, tin and lead belong to the same group in the periodic table of elements.  Germanium is a chemical element with symbol Ge, atomic number 32, and atomic weight 72.64. It is located in the fourth period and group IVA of the periodic table of chemical elements.  Germanium element is a gray-white metalloid, shiny, hard, belonging to the carbon group, chemical properties similar to tin and silicon of the same group, insoluble in water, hydrochloric acid, dilute caustic solution, soluble in aqua regia, concentrated nitric acid or sulfuric acid, so it is soluble in molten alkali, alkali peroxide, alkali metal nitrate or carbonate, and is relatively stable in the air.  The atomic structure of germanium includes 32 protons and electrons, and a corresponding number of neutrons. In chemical reactions, germanium atoms usually exist in a tetravalent state, that is, they share or lose four electrons to form Ge4+ ions.  Industrial Uses of GermaniumGermanium has special properties in many aspects, and has extensive and important applications in semiconductors, aerospace measurement and control, nuclear physics detection, optical fiber communication, infrared optics, solar cells, chemical catalysts, biomedicine and other fields. It is an important strategic resource as well. In the electronics industry, in alloy pretreatment, in the optical industry, it can also be used as a catalyst.  High-purity germanium is a semiconductor material. It can be obtained by reducing high-purity germanium oxide and then extracting it by smelting. Single crystal germanium doped with a small amount of specific impurities can be used to make various transistors, rectifiers and other devices. Germanium compounds are used in the manufacture of fluorescent panels and various high refractive index glasses.  Germanium single crystal can be used as transistor, which is the first generation of transistor material. Germanium is used in radiation detectors and thermoelectric materials. High-purity germanium single crystal has a high refractive index. It is transparent to infrared rays, and does not pass through visible light and ultraviolet rays. Besides, it can be used as a germanium window, prism or lens for infrared light.  At the beginning of the 20th century, germanium was used to treat anemia, and then became the earliest semiconductor element used. The refractive index of elemental germanium is very high, and it is only transparent to infrared light, but opaque to visible light and ultraviolet light.  Therefore, military observers such as infrared night vision devices use pure germanium to make lenses. Compounds of germanium and niobium are superconducting materials. Germanium dioxide is a catalyst for the polymerization reaction. The glass containing germanium dioxide has high refractive index and dispersion performance, and can be used as a wide-angle camera and microscope lens. Germanium trichloride is also a new type of optical fiber material additive.  According to the data, since 2013, the development of the optical fiber communication industry, the continuous expansion of the application of infrared optics in the military and civilian fields, the use of solar cells in space, and the promotion of ground-based high-efficiency solar power plants have made the global demand for germanium continues to grow steadily.  In the early 21st century, the recovery of the global optical fiber network market, especially the optical fiber market in North America and Japan, drove the rapid growth of the optical fiber market. The annual growth rate of global optical fiber demand has exceeded 20%.  Applications of germanium1.Semiconductor industry  Germanium is an important material in the semiconductor industry. It is used in the manufacture of high-speed electronic devices and optoelectronic devices, such as high-purity germanium wafers for the manufacture of solar cells and infrared detectors.  Also read: The ultimate guide to high-speed PCB and housing materials  2. Optical fiber communication  Germanium optical fiber is an important material for optical fiber communication. It has a high refractive index and transparency, and can be used to manufacture optical fibers and optical fiber amplifiers in high-speed communications.  3. Optical applications  Due to the permeability of germanium to infrared radiation, it is widely used in infrared optical systems and infrared imaging technology. Germanium lenses and germanium windows are used in areas such as infrared sensors, thermal imagers and infrared laser systems.  Also read: Optical module – A comprehensive exploration  4. Chemical catalysts  Germanium compounds are often used as catalysts and have important applications in the chemical industry. Germanium catalysts can promote chemical reactions and are used to produce polymers, prepare organic compounds, and more.  ConclusionGallium and germanium, as rare metal elements, play an important role in high-tech fields, electronics industry, energy industry, etc. As technology continues to advance, so too does the demand for these two elements.
Key word:
Release time:2023-09-26 14:49 reading:1735 Continue reading>>

Turn to

/ 1

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
model brand To snap up
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code