ROHM Develops an Ultra-Compact <span style='color:red'>MOSFET</span> Featuring Industry-Leading* Low ON-Resistance Ideal for Fast Charging Applications
  ROHM has developed a 30V N-channel MOSFET — AW2K21 — in a common-source configuration that achieves an industry-leading ON-resistance of 2.0mΩ (typ.) in a compact 2.0mm × 2.0mm package.  With the rise of compact devices featuring large-capacity batteries, such as smartphones, the need for fast charging functionality to shorten charging times continues to grow. These applications require bidirectional protection to prevent reverse current flow to peripheral ICs and other components when not actively supplying or receiving power. What’s more, fast charging involves high current power transfer, leading smartphone manufacturers to demand stringent specifications for MOSFETs, including a maximum current rating of 20A, breakdown voltage between 28V and 30V, and an ON-resistance of 5mΩ or less. However, meeting these requirements with standard solutions typically necessitates the use of two large low ON-resistance MOSFETs, increasing board space along with mounting complexity.  In response, ROHM developed an ultra-compact low ON-resistance MOSFET optimized for fast high-power charging. The AW2K21 adopts a proprietary structure that enhances cell density while minimizing the ON-resistance per unit chip area. Two MOSFETs are integrated into a single package, allowing a single part to support bidirectional protection applications (commonly required in power supply and charging circuits).  The proprietary structure also places the drain terminal on the top surface, unlike on the backside in standard vertical trench MOS structures. This enables the use of a WLCSP, which achieves a larger chip-to-package area ratio that further reduces ON-resistance per unit area. As a result, the new product not only minimizes power loss but also supports high current operation, making it ideal for high-power fast charging applications despite its ultra-compact size.  For example, in power supply and charging circuits for compact devices, standard solutions typically require two 3.3mm × 3.3mm MOSFETs. In contrast, the AW2K21 can achieve the same functionality with a single 2.0mm × 2.0mm unit, reducing the footprint and ON-resistance by approximately 81% and 33%, respectively. Even compared to similarly sized GaN HEMTs, ON-resistance is decreased by up to 50%, contributing to lower power consumption and increased space savings across a variety of applications.  The AW2K21 is also suitable for use as a unidirectional protection MOSFET in load switch applications, where it maintains the industry’s lowest ON-resistance. At the same time, ROHM is further pushing the limits of miniaturization with the development of an even smaller 1.2mm × 1.2mm model.  Going forward, ROHM remains dedicated to supporting the miniaturization and energy efficiency of electronic systems through compact, high-performance solutions that contribute to the realization of a sustainable society.  Key Product Characteristics  Application Examples  • Smartphones  • VR (Virtual Reality) headsets  • Compact printers  • Tablets     • Wearables           • LCD monitors  • Laptops     • Portable gaming consoles    • Drones  And other applications equipped with fast charging capability.  Terminology  MOSFET (Metal Oxide Semiconductor Field Effect Transistor)  A field-effect transistor (FET) featuring a metal oxide semiconductor structure (the most commonly used type). It consists of three terminals: gate, drain, and source. Applying a voltage to the gate (control terminal) regulates current flow from the drain to the source.  N-channel MOSFETs turn ON when a positive voltage is applied to the gate relative to the source. A common-source configuration MOSFET integrates two transistor elements that share a single source terminal.  ON-Resistance  The resistance between the Drain and Source of a MOSFET when it is in the ON state. A smaller RDS(on) reduces power loss during operation.  Breakdown Voltage  The maximum voltage that can be applied between the drain and source terminals of a MOSFET without causing damage. Exceeding this limit results in dielectric breakdown, potentially leading to device failure or malfunction.  WLCSP (Wafer Level Chip Scale Package)  An ultra-compact package in which terminals and wiring are formed directly on the wafer before separated into individual chips. Unlike general packages where the chips are cut from the wafer and then molded with resin to form terminals, WLCSP allows the package size to match the chip itself, making it possible to further reduce size.  GaN HEMT  GaN (Gallium Nitride) is a compound semiconductor material used in next-generation power devices. It offers superior physical properties over conventional silicon, enabling higher frequency operation with faster switching speeds. HEMT stands for High Electron Mobility Transistor.
Key word:
Release time:2025-07-08 17:04 reading:322 Continue reading>>
ROHM Introduces a New <span style='color:red'>MOSFET</span> for AI Servers with Industry-Leading* SOA Performance and Low ON-Resistance
  ROHM has released of a 100V power MOSFET - RY7P250BM - optimized for hot-swap circuits in 48V power systems used in AI servers and industrial power supplies requiring battery protection to the market.  As AI technology rapidly advances, data centers are facing unprecedented processing demands and server power consumption continues to increase annually. In particular, the growing use of generative AI and high-performance GPUs has created a need to simultaneously improve power efficiency while supporting higher currents. To address these challenges, the industry is shifting from 12V systems to more efficient 48V power architectures. Furthermore, in hot-swap circuits used to safely replace modules while servers remain powered on, MOSFETs are required that offer both wide SOA (Safe Operating Area) and low ON-resistance to protect against inrush current and overloads.  The RY7P250BM delivers these critical characteristics in a compact 8080-size package, helping to reduce power loss and cooling requirements in data centers while improving overall server reliability and energy efficiency. As the demand for 8080-size MOSFETs grows, this new product provides a drop-in replacement for existing designs. Notably, the RY7P250BM achieves wide SOA (VDS=48V, Pw=1ms/10ms) ideal for hot-swap operation. Power loss and heat generation are also minimized with an industry-leading low ON-resistance of 1.86mΩ (VGS=10V, ID=50A, Tj=25°C), approximately 18% lower than the typical 2.28mΩ of existing wide SOA 100V MOSFETs in the same size.  Wide SOA tolerance is essential in hot-swap circuits, especially those in AI servers that experience large inrush currents. The RY7P250BM meets this demand, achieving 16A at 10ms and 50A at 1ms, enabling support for high-load conditions conventional MOSFETs struggle to handle.  ROHM’s new product has also been certified as a recommended component by leading global cloud platform provider, where it is expected to gain widespread adoption in next-generation AI servers. Especially in server applications where reliability and energy efficiency are mission-critical, the combination of wide SOA and low RDS(on) has been highly evaluated for cloud infrastructure.  Going forward, ROHM will continue to expand its lineup of 48V-compatible power solutions for servers and industrial equipment, contributing to the development of sustainable ICT infrastructure and greater energy savings through high-efficiency, high-reliability products.  Application Examples  • 48V AI server systems and power supply hot-swap circuits in data centers  • 48V industrial equipment power systems (i.e. forklifts, power tools, robots, fan motors)  • Battery-powered industrial equipment such as AGVs (Automated Guided Vehicles)  • UPS and emergency power systems (battery backup units)  Online Sales InformationSales Launch Date: May 2025  Pricing: $5.50/unit (samples, excluding tax)  Online Distributors: DigiKey™, Mouser™ and Farnell™  The products will be offered at other online distributors as they become available.  Applicable Part No: RY7P250BM  EcoMOS™ BrandEcoMOS™ is ROHM's brand of silicon MOSFETs designed for energy-efficient applications in the power device sector.  Widely utilized in applications such as home appliances, industrial equipment, and automotive systems, EcoMOS™ provides a diverse lineup that enables product selection based on key parameters such as noise performance and switching characteristics to meet specific requirements.  TerminologyHot-Swap Circuit  A circuit that enables components to be inserted or removed while the system remains powered on.  It typically consists of MOSFETs, protection elements, and connectors, and is responsible for suppressing inrush current and protecting against overcurrent conditions, ensuring stable operation of the system and connected components.  Power MOSFET  A MOSFET designed for power conversion and switching applications. N-channel MOSFETs are the dominant type, turning on when a positive voltage is applied to the gate relative to the source. They offer lower ON-resistance and higher efficiency than P-channel variants. Due to their low conduction loss and high-speed switching performance, power MOSFETs are commonly used in power supplies, motor drives, and inverter circuits.  SOA (Safe Operating Area)  The defined range of voltage and current in which a device can operate reliably without risk of failure. Operating outside this boundary may result in thermal runaway or permanent damage. SOA is especially critical in applications exposed to inrush currents or overcurrent conditions.  Low ON-resistance (RDS(on))  The resistance value between the Drain and Source of a MOSFET during operation. A smaller RDS(on) reduces power loss during operation.  Inrush Current  A sudden surge of current that momentarily exceeds the rated value when an electronic device is powered on. Proper control of this current reduces stress on power circuit components, helping to prevent device damage and stabilize the system.
Key word:
Release time:2025-07-03 14:52 reading:267 Continue reading>>
ROHM's SiC <span style='color:red'>MOSFET</span> Adopted for Mass Production in Toyota's New BEV
  ~Integration in traction inverters extends the cruising range and improves performance~  The power module equipped with ROHM Co., Ltd.'s 4th generation SiC MOSFET bare chip has been adopted in the traction inverter of Toyota Motor Corporation's (hereinafter "Toyota") new crossover BEV "bZ5" for the Chinese market.  The "bZ5" is a crossover-type BEV jointly developed by Toyota, BYD TOYOTA EV TECHNOLOGY Co., Ltd. (hereinafter "BTET"), FAW Toyota Motor Co., Ltd. (hereinafter "FAW Toyota"), etc., and was launched by FAW Toyota in June 2025.  The power module adopted this time has started mass production shipments from HAIMOSIC (SHANGHAI) Co., Ltd., a joint venture between ROHM and Zhenghai Group. ROHM's power solutions centered on SiC MOSFETs contribute to the extended range and enhanced performance of the new BEV.  ROHM aims to complete the construction of the production line for the next-generation 5th generation SiC MOSFET by 2025, and is also accelerating the market introduction plans for the 6th and 7th generations, focusing on the development of SiC power devices. ROHM will continue to work on improving device performance and production efficiency, and strengthen the system to provide SiC in various forms such as bare chips, discrete components, and modules, promoting the spread of SiC and contributing to the creation of a sustainable mobility society.  About the "bZ5"  The "bZ5" is a crossover BEV jointly developed by Toyota, BTET, FAW Toyota, etc., with the concept of "Reboot." It features active and iconic styling and is designed to provide a personal space for young users known as Generation Z. The driving range is 550 km for the lower grade and 630 km (CLTC mode) for the higher grade. Reservations began on April 22, 2025, the day before the opening of the 2025 Shanghai Motor Show, attracting significant attention.  About HAIMOSIC (SHANGHAI) Co., Ltd.  HAIMOSIC (SHANGHAI) CO.,LTD. is a Joint venture initiated by Zhenghai Group Co., Ltd. (China) and ROHM Co., Ltd. (Japan). HAIMOSIC is mainly engaged in the R&D, design, manufacturing and sales of the silicon carbide power module, with an estimated annual capacity of 360,000 pieces/year. The total investment of the project is 450 million RMB and the registered capital is 250 million RMB. For more details, please visit HAIMOSIC's website: http://www.haimosic.com/
Key word:
Release time:2025-06-23 14:11 reading:374 Continue reading>>
Semikron Danfoss’ Module with ROHM’s latest 2kV SiC <span style='color:red'>MOSFET</span>s Integrated into SMA’s Large Scale Solar System
  SMA Solar Technology AG, a leading global specialist in photovoltaic and storage system technology, adopts Semikron Danfoss’ Module with ROHM’s latest 2kV SiC MOSFETs inside its new large scale solar system “Sunny Central FLEX”, a modular platform designed to streamline and enhance grid connections for large-scale photovoltaic installations, battery storage systems, and emerging technologies.  “ROHM’s new 2kV class SiC MOSFETs are designed to enable simple and highly efficient converter topologies for 1500V DC-links. It is developed with high reliability targets and cosmic radiation robustness – addressing the stringent conditions and extended converter lifetime requirements of the photovoltaic sector and beyond,” says Wolfram Harnack, President at ROHM Semiconductor GmbH. “The technology of our SiC device structure and integrated on-chip gate resistance eases device paralleling and simplifies high power module designs. The mass production has started,” adds Harnack.  Semikron Danfoss’ SEMITRANS® 20 has designed for high power applications and fast-switching operations, it represents the next generation of power modules for large converters. SEMITRANS® 20 with ROHM’s 2kV SiC MOSFETs is an integral part of SMA’s Sunny Central FLEX. “Semikron Danfoss and ROHM have collaborated for over a decade, focusing primarily on the implementation of silicon carbide (SiC) in power modules. More recently, we have teamed up to integrate silicon IGBTs as well”, says Peter Sontheimer, Senior Vice President of Semikron Danfoss’ Industry division.  “The new SEMITRANS® 20 offers simple, efficient solutions for 1500VDC applications. These modules are ideal for solar and energy storage inverters. Upcoming high-power electric truck chargers, as well as wind converters, will also benefit,” adds Sontheimer.  "The cooperation between SMA, Semikron Danfoss and ROHM is proof of how the seamless integration of innovative technologies creates the conditions for future-oriented energy projects," said Bernd Gessner, Product Manager Power Conversion Systems at SMA. "The demands on these solutions are higher than ever. SMA has decades of expertise and fulfills the highest requirements in terms of performance, reliability, durability and flexibility. The fact that Sunny Central FLEX meets these highest future-proof standards is also the result of the excellent cooperation with our partners who share the same commitment to excellence."  About SMA Solar Technology AG        As a leading global specialist in photovoltaic and storage system technology, the SMA Group is setting the standards today for the decentralized and renewable energy supply of tomorrow. SMA’s portfolio contains a wide range of efficient PV and battery inverters, holistic system solutions for PV and battery-storage systems of all power classes, intelligent energy management systems and charging solutions for electric vehicles and power-to-gas applications. Digital energy services as well as extensive services round off SMA’s range. SMA inverters installed throughout the world within the last 20 years with a total output of approximately 144 GW help avoid the emission of more than 64 million tons of CO2. SMA’s multi-award-winning technology is protected by more than 1,600 patents and utility models. Since 2008, the Group’s parent company, SMA Solar Technology AG, has been listed on the Prime Standard of the Frankfurt Stock Exchange (S92) and is listed on the SDAX index.  About Semikron Danfoss        Semikron Danfoss is a global technology leader in power electronics. Our product offerings include semiconductor devices, power modules, stacks and systems. In a world that is going electric, Semikron Danfoss technologies are more relevant than ever. With our innovative solutions for automotive, industrial and renewable applications we help the world utilize energy more efficiently and sustainably and thus to significantly reduce overall CO2 emissions – facing one of the biggest challenges today. We take care of our employees and create value for our customers by investing significantly in innovation, technology, capacity and service to deliver best-in-industry performance and for a sustainable future. Semikron Danfoss is a family-owned business, merged by SEMIKRON and Danfoss Silicon Power in 2022. We employ more than 3,500 people in 28 locations across the world. Our global footprint with production sites in Germany, Brazil, China, France, India, Italy, Slovakia and the United States ensures an unmatched service for our customers and partners. We offer more than 90 years of combined expertise in power module packaging, innovation and customer applications – making us the ultimate partner in power electronics.
Key word:
Release time:2025-04-29 10:49 reading:437 Continue reading>>
ROHM Develops Class-Leading* Low ON-Resistance, High-Power <span style='color:red'>MOSFET</span>s for High-Performance Enterprise and AI Servers
  ROHM has developed N-channel power MOSFETs featuring industry-leading* low ON-resistance and wide SOA capability. They are designed for power supplies inside high-performance enterprise and AI servers.  The advancement of high-level data processing technologies and the acceleration of digital transformation have increased the demand for data center servers. At the same time, the number of servers equipped with advanced computing capabilities for AI processing is on the rise and is expected to continue to grow. These servers operate 24 hours a day, 7 days a week – ensuring continuous operation. As a result, conduction losses caused by the ON-resistance of multiple MOSFETs in the power block have a significant impact on system performance and energy efficiency. This becomes particularly evident in AC-DC conversion circuits, where conduction losses make up a substantial portion of total power loss – driving the need for low ON-resistance MOSFETs.  Additionally, servers equipped with a standard hot-swap function, which allow for the replacement and maintenance of internal boards and storage devices while powered ON, experience a high inrush current during component exchanges. Therefore, to protect server components and MOSFETs from damage, a wide Safe Operating Area (SOA) tolerance is essential.  To address these challenges, ROHM has developed its new DFN5060-8S package that supports the packaging of a larger die compared to conventional designs, resulting in a lineup of power MOSFETs that achieve industry-leading* low ON-resistance along with wide SOA capability. These new products significantly contribute to improving efficiency and enhancing reliability in server power circuits.  The new lineup includes three products. The RS7E200BG (30V) is optimized for both secondary-side AC-DC conversion circuits and hot-swap controller (HSC) circuits in 12V power supplies used in high-performance enterprise servers. The RS7N200BH (80V) and RS7N160BH (80V) are ideal for secondary AC-DC conversion circuits in 48V AI server power supplies.  All three models feature the newly developed DFN5060-8S package (5.0mm × 6.0mm). The package increases the internal die size area by approximately 65% compared to the conventional HSOP8 package (5.0mm × 6.0mm). As a result, the RS7E200BG (30V) and RS7N200BH (80V) achieve ON-resistances of 0.53mΩ and 1.7mΩ (at VGS = 10V), respectively – both of which rank among the best in the industry in the 5.0mm × 6.0mm class, significantly contributing to higher efficiency in server power circuits.  Moreover, ROHM has optimized the internal clip design to enhance heat dissipation, further improving SOA tolerance, which contributes to ensuring application reliability. Notably, the RS7E200BG (30V) achieves an SOA tolerance of over 70A at a pulse width of 1ms and VDS = 12V, which is twice that of the conventional HSOP8 package MOSFETs under the same conditions, ensuring industry-leading SOA performance in a 5.0mm × 6.0mm footprint.  Going forward, ROHM plans to gradually begin mass production of power MOSFETs compatible with hot-swap controller circuits for AI servers in 2025, continuing to expand its lineup that contributes to greater efficiency and reliability across a wide range of applications.  Product Lineup  EcoMOS™ Brand  EcoMOS™ is ROHM's brand of silicon power MOSFETs designed for energy-efficient applications in the power device sector.  Widely utilized in applications such as home appliances, industrial equipment, and automotive systems, EcoMOS™ provides a diverse lineup that enables product selection based on key parameters such as noise performance and switching characteristics to meet specific requirements.  EcoMOS™ is a trademark or registered trademark of ROHM Co., Ltd.  Application Examples  ・AC-DC conversion and HSC circuits for 12V high-performance enterprise server power supplies  ・AC-DC conversion circuits for 48V AI server power supplies  ・48V industrial equipment power supplies (i.e. fan motors)  Terminology  Low ON-Resistance (RDS(on))  The resistance value between the Drain and Source of a MOSFET during operation. A smaller RDS(on) results in lower power loss during operation.  SOA (Safe Operating Area) Tolerance  The range of voltage and current within which a device can operate safely without damage. Exceeding this range can lead to thermal runaway or device failure, making SOA tolerance a critical factor, especially in applications prone to inrush current or overcurrent.  Power MOSFET  A type of MOSFET used for power conversion and switching applications. N-channel MOSFETs are the mainstream choice, as they become conductive when a positive voltage is applied to the gate relative to the source, offering lower ON-resistance and higher efficiency than P-channel variants. Due to their low loss and high-speed switching capabilities, power MOSFETs are widely used in power circuits, motor drive circuits, and inverters.  Hot-Swap Controller (HSC)  A specialized integrated circuit (IC) that enables hot-swap functionality, allowing components to be inserted or removed while the power supply system remains active. It plays a crucial role in managing inrush current that occurs during component insertion, protecting both the system and connected components from damage.  Inrush Current  A sudden surge of current that momentarily exceeds the rated value when an electronic device is powered ON. Proper control of this current reduces stress on power circuit components, helping to prevent device failure and stabilize the system.
Key word:
Release time:2025-04-10 13:10 reading:503 Continue reading>>
ROHM’s New N-channel <span style='color:red'>MOSFET</span>s Offer High Mounting Reliability in Automotive Applications
  ROHM has released N-channel MOSFETs - RF9x120BKFRA / RQ3xxx0BxFRA / RD3x0xxBKHRB - featuring low ON-resistance ideal for a variety of automotive applications, including motors for doors and seat positioning, as well as LED headlights. Sales have begun with 10 models across 3 package types, with plans to expand the lineup in the future.  The automotive sector is seeing a surge in the number of electronic components, driven by the demand for enhanced safety and convenience. At the same time, there is a pressing need for improved power efficiency to optimize fuel and electricity consumption. Especially for MOSFETs essential for switching applications in automotive systems, there is a growing requirement for lower ON resistance to minimize loss and heat generation.  ROHM, which has been supplying low ON-resistance MOSFETs for consumer and industrial equipment, has now extended this technology to the automotive sector. Adapting cutting-edge medium voltage processes to meet the stringent reliability requirements of automotive products allowed us to develop 10 N-channel MOSFET models characterized by low ON resistance.  Offered in voltage ratings of 40V, 60V, and 100V, the new products incorporate a split-gate structure to achieve low ON-resistance, contributing to higher efficiency operation in automotive applications. All models are qualified under the AEC-Q101 automotive reliability standard, guaranteeing exceptional high reliability.  Users can select from among three package types, depending on the application. For space-constrained sets like Advanced Driver Assistance Systems (ADAS), the compact DFN2020Y7LSAA (2.0mm × 2.0mm) and HSMT8AG (3.3mm × 3.3mm) packages are ideal. For automotive power applications, the widely used TO-252 (DPAK) package (6.6mm × 10.0mm) is also available. In addition, ROHM has further enhanced mounting reliability by utilizing wettable flank technology for the DFN2020Y7LSAA package and gull-wing leads for the TO-252 package.  Going forward, ROHM plans to expand its lineup of medium-voltage N-channel MOSFETs to provide even greater miniaturization and higher efficiency in automotive applications. Mass production of the DFN3333 (3.3mm × 3.3mm) and HPLF5060 (5.0mm × 6.0mm) packages is scheduled for October 2024, followed by 80V products in 2025. P-channel products are also scheduled for future release.  Application Examples◇ Vehicle motors (e.g., doors, seat positioning, power windows)  ◇ LED headlights  ◇ Car infotainment / displays  ◇ Advanced Driver Assistance Systems (ADAS)  Internet Sales InformationOnline Distributors: DigiKey, Mouser and Farnell  Pricing: $3.50/unit (samples, excluding tax)  Availability: Now (OEM quantities)  The products will be offered at other online distributors as they become available.  (Sales Launch Date: June 2024)  Online Distributors  TerminologyON resistance (Ron)  The resistance value between the Drain and Source while the MOSFET is ON. The smaller this value is, the lower the (power) loss during conduction.  N-channel MOSFET  A type of MOSFET that conducts when a positive voltage is applied to the Gate relative to the Source. N-channel MOSFETs are more widely adopted in the market today due to their lower ON-resistance (RDS(on)) over P-channel variants, facilitating use in a broad range of circuits.  Split Gate Structure  A technology that divides the gate of the MOSFET into multiple parts to efficiently regulate the flow of electrons. This ensures fast, reliable operation.  Wettable Flank Technology  A technique for plating the sides of the lead frame on bottom electrode packages to improve mounting reliability.  Gull Wing Leads  A terminal structure that spreads outwards from both sides of the package. It achieves excellent heat dissipation along with increased mounting reliability.
Key word:
Release time:2024-09-24 10:58 reading:739 Continue reading>>
ROHM's 4th Generation SiC <span style='color:red'>MOSFET</span> Bare Chips Adopted in Three EV Models of ZEEKR from Geely
  ROHM has announced the adoption of power modules equipped with 4th generation SiC MOSFET bare chips for the traction inverters in three models of ZEEKR EV brand from Zhejiang Geely Holding Group (Geely), a top 10 global automaker. Since 2023, these power modules have been mass produced and shipped from HAIMOSIC (SHANGHAI) Co., Ltd. - a joint venture between ROHM and Zhenghai Group Co., Ltd. to Viridi E-Mobility Technology (Ningbo) Co., Ltd, a Tier 1 manufacturer under Geely.  Geely and ROHM have been collaborating since 2018, beginning with technical exchanges, then later forming a strategic partnership focused on SiC power devices in 2021. This led to the integration of ROHM’s SiC MOSFETs into the traction inverters of three models: the ZEEKR X, 009, and 001. In each of these EVs, ROHM’s power solutions centered on SiC MOSFETs play a key role in extending the cruising range and enhancing overall performance.  ROHM is committed to advancing SiC technology, with plans to launch 5th generation SiC MOSFETs in 2025 while accelerating market introduction of 6th and 7th generation devices. What’s more, by offering SiC in various forms, including bare chips, discrete components, and modules, ROHM is able to promote the widespread adoption of SiC technology, contributing to the creation of a sustainable society.  ZEEKR Models Equipped with ROHM’s EcoSiC™The ZEEKR X, which features a maximum output exceeding 300kW and cruising range of more than 400km despite being a compact SUV, is attracting attention even outside of China due to its exceptional cost performance. The 009 minivan features an intelligent cockpit and large 140kWh battery, achieving an outstanding maximum cruising range of 822km. And for those looking for superior performance, the flagship model, 001, offers a maximum output of over 400kW from dual motors with a range of over 580km along with a four-wheel independent control system.  About ZEEKRZEEKR was launched in 2021 as the dedicated EV brand of Geely, a leading Chinese automaker that also owns well-established premium brands such as Volvo Cars and Lotus Cars. The name ZEEKR combines ZE, representing ZERO, the starting point of infinite possibilities, E for innovation in the electric era, and KR, the chemical symbol for krypton, a rare gas that emits light when energized. ZEEKR’s philosophy centers on harmonizing humanity, technology, and nature, aiming to redefine the perception of electric vehicles through innovative designs and technologies. The brand has garnered praise in markets outside of China, including in the US and Europe, for its impressive driving performance and range, with plans to expand sales to Western and Northern Europe.  Please visit ZEEKR's website for more information: https://zeekrglobal.com/  Market Background and ROHM’s EcoSiC™In recent years, there has been a push to develop more compact, efficient, lightweight electric systems to expand the adoption of next-generation electric vehicles (xEVs) and achieve environmental goals such as carbon neutrality. For electric vehicles in particular, improving the efficiency of the traction inverter, a key element of the drive system, is crucial for extending the cruising range and reducing the size of the onboard battery, heightening expectations for SiC power devices.  As the world’s first supplier to begin mass production of SiC MOSFETs in 2010, ROHM continues to lead the industry in SiC device technology development. These devices are now marketed under the EcoSiC™ brand, encompassing a comprehensive lineup that includes bare chips, discrete components, and modules. For more information, please visit the SiC page on ROHM’s website: https://www.rohm.com/products/sic-power-devices   EcoSiC™ BrandEcoSiC™ is a brand of devices that utilize silicon carbide (SiC), which is attracting attention in the power device field for performance that surpasses silicon (Si). ROHM independently develops technologies essential for the evolution of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.  EcoSiC™ is a trademark or registered trademark of ROHM Co., Ltd.  Supporting InformationROHM is committed to providing application-level support, including the use of in-house motor testing equipment Additionally, by clicking on the URL below, users can access various supporting contents on ROHM’s website that facilitate the evaluation and introduction of 4th generation SiC MOSFETs, such as SPICE and other design models, simulation circuits for common applications (ROHM Solution Simulator), and evaluation board information.  https://www.rohm.com/products/sic-power-devices/sic-mosfet#supportInfo
Key word:
Release time:2024-09-03 10:42 reading:749 Continue reading>>
ROHM’s Compact SOT-223-3 600V <span style='color:red'>MOSFET</span>s Contribute to Smaller, Lower Profile Designs for Lighting Power Supplies, Pumps, and Motors
  ROHM has added a lineup of compact 600V Super Junction MOSFETs - the R6004END4 / R6003KND4 / R6006KND4 / R6002JND4 / R6003JND4. These devices are ideal for small lighting power supplies, pumps, and motors.  In recent years, power supplies for lighting and motors for pumps are required to be smaller as devices become more sophisticated - spurring the demand for compact MOSFETs that are essential for switching operation.  Generally, however, it has been difficult to reduce the size of Super Junction MOSFETs while maintaining an optimal balance between high breakdown voltage and low ON resistance. In response, after reviewing the shape of the mounted chip, ROHM was able to develop 5 models in the SOT-223-3 package (6.50mm × 7.00mm × 1.66mm) - providing a smaller, lower profile form factor without compromising the performance of conventional products.  Compared to the conventional TO-252 package (6.60mm × 10.00mm × 2.30mm), ROHM’s new products reduce area and thickness by 31% and 27% - contributing to smaller, lower profile applications. At the same time, the same land pattern (footprint) as the TO-252 package can be used, enabling mounting on existing circuit boards without modification.  Offering distinctive features, three of the models optimized for compact power supplies. The R6004END4, characterized by low noise, is suitable for applications where noise is a concern, while the R6003KND4 and R6006KND4, capable of high-speed switching, are ideal for sets requiring low loss, high efficiency operation. The R6002JND4 and R6003JND4 utilize proprietary PrestoMOS technology to achieve significantly lower switching losses by speeding up reverse recovery time (trr), making them well-suited for motors-equipped devices.  Supporting materials such as application notes, technical documents, and SPICE simulation models for each product are available on ROHM’s website free of charge to enable quick market introduction.  Going forward, ROHM will continue to expand its Super Junction MOSFET lineup in different packages and even lower ON resistances that contribute to solving social issues such as environmental protection by reducing power consumption in variety devices.  Product Lineup  For compact power supplies  Application Examples        • R6004END4 / R6003KND4 / R6006KND4: Lighting, Air conditioners, Refrigerators, etc.  • R6002JND4 / R6003JND4: Motors for pumps, fans, copiers, etc.  Online Sales InformationSales Launch Date: December 2023  Pricing: $3.0/unit (samples, excluding tax)  Online Distributors: DigiKey, Mouser, and Farnell  The products will be offered at other online distributors as they become available.  Online Distributors  For More Information about ROHM’s Super Junction MOSFETVarious resources are available on ROHM's website, including application notes on the SOT-223-3 package and other documents essential for circuit design.  https://www.rohm.com/support/super-junction-mosfet  PrestoMOS“Presto” is an Italian musical term meaning “very fast.”  PrestoMOS is ROHM’s original power MOSFET that maintains the high withstand voltage and low ON resistance of Super Junction MOSFETs while speeding up the reverse recovery time of the built-in diode. Reducing switching losses makes it ideal for a wider range of applications with inverter circuits, such as air conditioners and refrigerators.  TerminologySuper Junction MOSFET (Metal Oxide Semiconductor Field Effect Transistor)  A type of transistor, MOSFETs can be divided by device structure into DMOSFET (Double-diffused MOSFET), planar, and super junction topologies. Super Junction MOSFETs deliver superior breakdown voltage and output current than both DMOSFETs and planar types, featuring lower loss when handling large power.  trr (Reverse Recovery Time)  The time it takes for the built-in diode to switch from the ON state to completely OFF. The lower this value is, the smaller the loss during switching.
Key word:
Release time:2024-01-24 13:40 reading:2165 Continue reading>>
ROHM’s New 5-Model Lineup of Low ON Resistance 100V Dual <span style='color:red'>MOSFET</span>s
  ROHM has developed dual MOSFETs that integrate two 100V chips in a single package - ideal for fan motor drive applied in communication base stations and industrial equipment. New five-models have been added as part of the HP8KEx/HT8KEx (Nch+Nch) and HP8MEx (Nch+Pch) series.  Recent years have seen a transition to higher voltages from conventional 12V/24V to 48V systems in communication base stations and industrial equipment, - intending to achieve higher efficiency by reducing current values. In these situations, switching MOSFETs are required a withstand voltage of 100V to account for voltage fluctuations, as 48V power supplies are also used in the fan motors for cooling these applications. However, increasing the breakdown voltage raises ON resistance (RDS(on)) (which is in a trade-off relationship), leading to decreased efficiency, making it difficult to achieve both lower RDS(on) and higher breakdown voltage. Moreover, unlike multiple individual drive MOSFETs normally applied in fan motors - dual MOSFETs that integrate two chips in one package are increasingly being adopted to save space.  In response, ROHM developed two new series - the HP8KEx/HT8KEx (Nch+Nch) and the HP8MEx (Nch+Pch) - that combine Nch and Pch MOSFET chips using the latest processes. Both series achieve the industry’s lowest RDS(on) by adopting new backside heat dissipation packages with excellent heat dissipation characteristics. As a result, RDS(on) is reduced by up to 56% compared with standard dual MOSFETs (19.6mΩ for the HSOP8 and 57.0mΩ for the HSMT8 Nch+Nch), contributing to significantly lower set power consumption. At the same time, combining two chips in a single package provides greater space savings by reducing area considerably. For example, replacing two single-chip TO-252 MOSFETs with one HSOP8 decreases footprint by 77%.  Next, ROHM will continue to expand its dual MOSFET lineup to withstand voltages ideal for industrial equipment while also developing low-noise variants. This is expected to contribute to solving social issues such as environmental protection by saving space and reducing power consumption in various applications.  Application Examples        - Fan motors for communication base stations  - Fan motors for factory automation, and other industrial equipment  - Fan motors for data center servers, etc.  Combination with a pre-driver IC to achieve the optimal motor drive solutionCombining these products with ROHM’s market-proven pre-driver ICs for single-/3-phase brushless motors make it possible to consider even smaller motors featuring lower consumption and quieter drive. By providing total support for peripheral circuit design that marries the dual-MOSFET series with pre-driver ICs, ROHM can offer the best motor drive solutions for customer needs.  Solution examples with 100V Dual MOSFETs  - HT8KE5 (Nch+Nch Dual MOSFET) + BM64070MUV (3-Phase Brushless Motor Pre-Driver IC)  - HT8KE6 (Nch+Nch Dual MOSFET) + BM64300MUV (3-Phase Brushless Motor Pre-Driver IC) and more
Key word:
Release time:2023-10-19 16:07 reading:2060 Continue reading>>
ROHM Semiconductor R6049YN N-Channel Power <span style='color:red'>MOSFET</span>s
  ROHM Semiconductor R6049YN N-Channel Power MOSFETs offer high-speed switching and low-on resistances for switching applications. Operating in a -55°C to +150°C temperature range, these single-channel enhancement mode devices feature a 600V drain-source breakdown voltage, a ±22A or ±49A continuous drain current, and a 65nC total gate charge. The ROHM R6049YN N-Channel Power MOSFETs are available in TO-220AB-3, TO-220FM-3, and TO-247G-3 package options.     FEATURES  》Low on-resistance  》Fast switching  》Drive circuits can be simple  》Si technology  》Enhancement channel mode  》Through-hole mount  》Halogen-free mold compound  》Lead-free plating and RoHS-compliant  SPECIFICATIONS  》600V drain-source breakdown voltage  》±22A or ±49A continuous drain current  》±147A pulsed drain current  》82mΩ on-drain-source resistance  》±30V gate-source voltage  》4V to 6V gate-source threshold voltage range  》100μA maximum zero gate voltage drain current  》±100nA maximum gate-source leakage current  》49A maximum source current  》1.5V maximum source-drain voltage  》1.0Ω typical gate resistance  》6.5μC typical reverse recovery charge  》34A typical peak reverse recovery current  》Typical gate charge  。65nC total  。21nC source  。30nC drain  》7V typical gate plateau voltage  》90W or 448W power dissipation  》Typical capacitance  。2940pF input  。100pF output  。Effective output  .100pF energy related  .650pF time related  》Single pulse avalanche  。2.8A current  。208mJ energy  》Typical time  。38ns turn-on delay  。33ns rise  。91ns turn-off delay  。19ns fall  。380ns reverse recovery  》-55°C to +150°C operating temperature range  》TO-220AB-3, TO-220FM-3, and TO-247G-3 package options  INNER CIRCUIT
Key word:
Release time:2023-09-25 15:58 reading:2154 Continue reading>>

Turn to

/ 2

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
model brand To snap up
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code