预估2025年折叠<span style='color:red'>手机</span>出货量将达1,980万支
  2025年折叠手机出货量将达1,980万支,渗透率约1.6%,与2024年持平。尽管成长速度较前几年放缓,但受到技术进步与价格下调带动,折叠手机逐渐成为中高阶市场的技术焦点,以及品牌差异化利器。各大厂商正加速布局新品,并积极扩展产品线与价格区间,为2026年可能到来的市场爆发期作准备。  三星居于折叠机领先地位,近期推出新一代旗舰机Galaxy Z Fold7,在铰链结构、折痕控制与重量厚度等方面均有明显优化。TrendForce集邦咨询表示,三星因面临其他品牌竞争,市场份额将受挑战,预估其全球市占率将从2024年的45.2%下降至2025年35.4%。  2025年华为则有望延续在中国市场的强劲表现,全球市占位居第二,市占达34.3%。值得关注的是,荣耀与联想(Motorola)今年成长动能明显,预估市占将从2024年的6.0%和5.5%,分别提升2025年的9.1%与7.6%,展现两大品牌在中高阶折叠市场积极扩张的成果。  小米也持续突破,并凭借MIX Flip系列打入轻量折叠机市场,预估市占率将从2024年的3.0%成长至今年的5.1%。其他品牌(如OPPO、vivo等)合计占比将达8.5%,显示折叠手机生态系逐步多元,竞争格局更加开放。  TrendForce集邦咨询表示,即便技术与产品丰富度已大幅提升,折叠手机的全球销售成长依然相对温和,主因是消费者对折痕可见度、耐用性与价格仍持保留态度,尤其对非品牌忠实用户而言,换机诱因仍偏低。由于多数用户偏好高性价比和发展成熟的直板旗舰机,造成折叠手机短期的市场定位仍是“高阶实验性产品”。  这一现象很可能于2026年出现转折。TrendForce集邦咨询指出,苹果很可能于明年下半年推出首款外屏幕5.5吋、内屏幕7.8吋的折叠手机。若苹果正式入局,高阶消费者对折叠产品的关注度与接受度有望快速提升。据了解,苹果产品将延续其一贯重视稳定性与生态整合的策略,并可能透过iOS深度优化操作场景和高度整合自研应用与硬件,进一步提升用户体验。  整体而言,折叠手机对不再只是品牌展示创新能力的途径,已真正成为产品主线,从入门到旗舰机种都有完整规划。在价格逐步下降和材料更稳定的前提下,对消费者来说将不再遥不可及。TrendForce集邦咨询认为,苹果明年新品可望为折叠机市场带来真正的主流化契机,也为智能型手机产业注入新一波创新动力。
关键词:
发布时间:2025-07-24 15:19 阅读量:578 继续阅读>>
江西萨瑞微:USB PD快充与Type-C接口静电防护,确保<span style='color:red'>手机</span>安全充电的关键技术
  随着智能手机的普及和快充技术的发展,USB Power Delivery (PD)快充和USB Type-C接口已成为现代移动设备的标配。然而,这些先进技术在带来便利的同时,也为设备的静电防护带来了新的挑战。今天,让我们深入探讨USB PD快充和Type-C接口的静电防护问题,以及如何通过精心设计来确保手机的安全充电。  USB PD快充技术  USB PD是一种先进的快速充电协议,能够在USB连接上提供高达100W的功率。它通过动态协商电压和电流,实现了更快、更高效的充电。  在日常使用USB PD快充充电器时,需要频繁地热插拔。如果其内部防护措施不到位的话,不仅会导致浪涌电流通过电源线进入内部电路损坏主控芯片,而且还容易引发输出瞬间大电流,影响充电稳定和安全,甚至导致受充设备损坏。不仅如此,USB PD快充充电器和快充移动电源产品在使用中,很容易与人体或其他带静电物体产生接触,而多数产品外壳的壳料与USB端口、呼吸灯、按键的连接处并不是无缝设计,外部静电很容易通过接缝进入主板中,导致产品损坏。  USB Type-C接口的 ESD 防护  大多数时候,我们都带着手机、智能手表、无线耳机等,这些设备都只能通过 USB 端口充电。使用电脑时,我们经常会使用USB 移动闪存驱动器(简称 U 盘)来传输文件。在车里给手机充电时,我们会使用标准的USB 端口。USB 在我们的日常生活中无处不在,参与我们的每一次数字体验的一部分。  Type-C接口凭借其可逆插拔和多功能性成为新一代USB标准,但其密集的引脚排列和双向性也增加了静电防护的难度。  USB PD快充与Type-C接口静电防护方案  01.USB PD 快充  想要生产出一款稳定安全的USB PD快充产品,其EOS防护/ESD静电保护措施必不可少。从物料成本、研发周期、生产流程等方面考虑,越来越多的厂商选择在USB PD快充接口内置浪涌和静电保护器件。那么,USB PD快充接口浪涌静电保护选用什么型号的TVS二极管呢?  从萨瑞微电子USB PD快充接口浪涌静电保护方案图一,电源供电口萨瑞微电子选用SES2431P4、SEU0501P1做防护,具体根据充电电压大小来选择。工作电压为5V、24V,具有低钳位、低漏电流的特点,适合大浪涌保护;DFN2020-3L、DFN1006-2L封装,减小USB PD接口安装空间;符合IEC 61000-4-2(静电)±30kV(空气)和±30kV(接触)标准。  在D+/D-数据接口和快充协议检测CC1/2接口静电防护中,萨瑞微电子推荐选用ESD二极管SEU0501P1,工作电压5V、峰值脉冲电流3A、DFN1006-2L封装;结电容低至0.5pF,保证高速数据信号的传输;符合IEC 61000-4-2(静电)±15kV(空气)和 ±10kV(接触)标准。  02.Type-C接口  保护 USB 接口不受静电放电 (ESD) 的影响十分重要。我们每天会数次在电子产品上插拔USB 数据线,在触碰或使用 USB 端口时,便可能遇到静电放电,这种情况十分常见。这些ESD 事件既可以由用户(人体)产生,也可以由数据线上存储的电荷产生。静电峰值电压可以达到数万伏,很容易损坏USB 收发器敏感的 CMOS 结构。因此,ESD防护对每个 USB 引脚都有着重要且必要的意义。  作为最新款连接器之一的USB Type-C,在物理尺寸以及与主机和外围设备的连接方式方面,都明显不同于以前的版本。USB Type-C采用可正反插设计,总共24 个引脚,上下各 12 个引脚,支持朝上或朝下插入。  SBU 和CC 引脚保护:由于USB Type-C 插头尺寸很小且引脚之间相隔很近,分立式单线瞬态电压抑制(TVS) 二极管非常适合保护端口免受 ESD 事件的影响。此外,分立式TVS 二极管对于电路设计师而言,可以更方便地布局和布线。参考图 引脚配置,我们可以看到 CC 引脚和SBU 引脚紧挨着 VBUS 引脚。VBUS引脚最高可达 24V,所以如果发生短路,CC引脚和 SBU 引脚则会暴露在24V 的电压下。在这种情况下,TVS 二极管的最低击穿电压不低于24V 才能保护 CC 和SBU 引脚。根据 IEC 61000-4-5的要求,萨瑞微电子的SES2431P4能够承受500V浪涌电压!IEC 61000-4-2的要求,在±24kV(空气放电)和±17kV(接触放电)之间的高 ESD,并且能够保持电路正常工作!  D+/D- 线路保护:D+/D-线路适用于 USB 2.0 接口,可以使用萨瑞微电子SEU0501P1、SEU0521P1S的进行保护。SEU0501P1属于 5V ESD,有着0.5pF 的最大结电容,采用的是DFN1006-2L超小型封装尺寸。  推荐使用萨瑞微ESD\TVS系列  以上是萨瑞微电子USB PD快充与Type-C接口静电防护方案,如有特殊需求,欢迎前来探讨。  结论  在追求更快充电速度和更高数据传输率的同时,我们不能忽视静电防护这一关键环节。通过精心的设计和选择合适的保护器件,我们可以在享受先进技术带来便利的同时,确保设备的可靠性和长期使用寿命。
关键词:
发布时间:2025-07-18 13:13 阅读量:437 继续阅读>>
美光G9 NAND技术重磅发布!旗舰<span style='color:red'>手机</span>性能再攀巅峰
  在快节奏的今天,手机早已不是单纯的通讯工具,随着AI技术的不断发展,智能手机正在成为人类的AI助手。这背后,都依赖大容量高速存储系统!这一趋势将进一步推动边缘设备对内存和存储的需求。  在2025年巴塞罗那世界移动通信大会(MWC25)上,美光亮出大招:宣布正在送样业界首款基于 G9 NAND的移动UFS 4.1和UFS 3.1产品。  G9节点是美光的新一代创新型NAND技术,旨在为旗下所有存储解决方案带来前所未有的性能和密度优势。 G9对新一代移动通用闪存(UFS)移动产品到底有多强?一文揭秘!  G9 NAND UFS 4.1:性能直接拉满  美光G9 NAND移动UFS 4.1解决方案可为旗舰智能手机带来业界前沿的性能和创新,从而实现更快速、更灵敏的使用体验。  速度更快、延迟更低:  想象一下,手机中的虚拟助手能够充分理解您的指令,您还可以使用手机快速进行实时图片编辑,并在瞬间完成语言翻译。这些都是未来基于大语言模型(LLM)的AI应用,它们将彻底改变智能手机用户的数字体验。  最终,这些服务将融合成功能强大的多模态AI代理,为用户提供快速、全面且具备情境感知能力的数字体验。为实现这一目标,智能手机需要快速访问海量数据集、降低延迟、提高响应速度,从而实现更流畅的终端用户体验。  凭借超过4100MBps的顺序读写速度,美光G9 NAND移动UFS 4.1正在引领这一变革趋势。与上一代G8 UFS 4.0进行比较后,我们能清楚地看到G9 UFS 4.1带来的性能飞跃。  512GB G9 UFS 4.1与512GB G8 UFS 4.0对比  容量更大:  更大的存储容量是提升本地计算和处理能力的因素之一。传统的云端AI系统需要将敏感数据通过网络传输后进行处理,存在数据泄露风险。边缘AI可在本地处理生成的数据,从根本上降低了上述风险。  美光G9 UFS 4.1支持高达1TB的NAND大容量存储,可满足设备端处理大量数据的需求,让您的智能手机轻松处理复杂的计算任务。  封装更小更薄:  美光G9 NAND UFS 4.1不仅提高了容量,其更小更薄的外形可支持更具时尚感的创新智能手机设计。  美光G9 NAND UFS 4.1采用业界前沿封装技术,1TB NAND UFS的封装尺寸仅有9x13x0.85毫米大小(与上一代G8 UFS 4.0相比),可大幅节省手机内部空间,是下一代可折叠以及超薄智能手机设计的理想之选,其节约的空间可用于搭载更大容量的电池。  专有功能优化:  1. 数据碎片整理:  智能手机的运行速度逐渐变慢,通常是由于数据碎片化—文件分散存储在各个地方,导致存储设备难以实现高效读取。  美光专有的数据碎片整理功能可解决这一问题,它支持UFS设备的控制器绕过主机层,直接在NAND内部发出碎片整理命令。通过简化数据迁移过程,数据碎片整理功能可将读取速度提升高达60%(启用数据碎片整理与未启用数据碎片整理的对比),从而提升智能手机的整体性能,包括日常任务和 AI 相关任务。  简言之,数据碎片整理功能通过在内部处理数据迁移/碎片整理,提高读取性能并降低设备的负荷,使智能手机能够更快、更高效地访问文件,实现更流畅的使用体验。  2. 增强型WriteBooster:  借助美光的增强型WriteBooster功能,智能手机处理器可将常用数据“固定”在存储设备内部名为“WriteBooster”的指定区域内。  利用该功能,处理器可以更轻松地将重要数据从存储设备动态加载到内存,确保处理过程更加高效,不会面临内存容量不足问题。  内部测试数据表明,启用此功能后,随机读取速度可提高多达30%(启用增强型WriteBooster与未启用增强型WriteBooster的对比)。  增强型WriteBooster功能可加速智能手机的应用启动速度、文件传输速度,让用户操作更加流畅。当用户需要同时使用日常应用和 AI 应用时,此功能尤为有用。  在这种使用场景下,可利用增强型WriteBooster功能为AI模型的数据创建内存映射,从而实现更快的数据交换和读取。  未固定的数据将从缓存缓冲区移至普通存储区域  3. 智能延迟跟踪器(ILT):  美光的智能延迟跟踪器可监控系统和存储设备上的I/O存储延迟,以检测和分析影响智能手机性能的异常延迟,例如应用启动缓慢等。通过识别这些延迟问题,跟踪器可帮助智能手机OEM厂商优化系统,提升整体用户体验。  此功能可确保智能手机能够高速流畅地运行各种AI应用和日常任务,例如打开相机、在相册中查找之前度假时拍摄的照片等。  4. UFS分区(ZUFS):  想象一下,当您在旅行前收拾行李时,您的行李箱被整齐地划分为三个部分,分别用于放置袜子、衬衫和裤子,通过这种方式,您可以更快地找到所需物品。  美光的UFS分区(ZUFS)功能以类似方式组织智能手机内的数据。ZUFS将具有相似I/O特性的数据集中存放到UFS设备内的特定区域中,能够尽可能减少数据搜索时间,从而提高读/写效率。  这种简化的数据检索方式可确保系统响应更快、更流畅,就像在行李箱中取出预先放好的袜子一样。  传统数据放置方式与分区数据放置方式的对比  智能加速:面向未来的创新  美光移动业务部门专注于提供先进的NAND闪存解决方案,并提供针对旗舰智能手机设计的定制功能。  这些创新旨在加速边缘设备上的AI应用。通过与客户及生态系统伙伴合作,美光正在调整其产品和技术路线图,以便与AI及边缘计算的未来趋势保持一致。  这种合作可确保未来的移动设备能够处理日益复杂的AI任务,以及数据密集型应用。G9 NAND以及众多新的固件功能正是美光致力于创新的例证。
关键词:
发布时间:2025-05-07 11:26 阅读量:504 继续阅读>>
上海雷卯:快充<span style='color:red'>手机</span>vbus防护案例---SMD12CA SMD15CA SMD24CA
  智能手机越来越追求快充,功率越来越高,不仅对充电适配器要求高,对type-c接口也是挑战,所以快充手机的充电浪涌测试越来越严格。  一、SMD12CA SMD15CA SMD24CA三颗防静电  二极管性能优势  这三颗料是作为USB接口Vbus电源接口静电浪涌保护常用料。推荐这三款的原因是如下:  功率高,能抗大浪涌,这样频繁的热插拔也能保护内部电路。上海雷卯这几款做到5500W-6000W(8/20us),相对Nexperia semtech litttefuse 品牌的DFN2020系列参数一致,单成本只有一半。  Flat-Clamp 技术,提供平坦和与温度无关的箝位电压,将受保护系统的残余电压降至最低,这样能更好的保护后级电路,VC超低。  抗静电能力强:接触和空气都在30KV  下表列出了主要参数:  依靠以上优势性能目前手机充电口印度非洲都非常适合这几款大功率TVS。  SMD12CA/15CA/24CA V/I 特性图如下:  二、为什么手机USB接口要放TVS  二极管  首先一点 ,手机USB接口我们插拔的次数比较多,第二,日常使用中因摩擦、触碰容易接触到,所以这一接口在出厂之前必定要做ESD测试认证,即 IEC 61000-4-2 测试。  我们知道静电和浪涌可能会对手机 USB 口及内部电路造成严重损害。静电产生时瞬间的高电压可能会击穿 USB 口的电路元件。我们插拔USB接口容易产生EOS这都会对内部元件造成浪涌,强大的电流冲击可能损坏手机的芯片和其他电子元件。 所以我们需要对手机USB接口做静电保护,延长手机使用寿命,确保数据安全,稳定性能。  三、常见的保护措施  1. 内置保护电路:许多手机在设计时已经内置了一定程度的静电浪涌保护电路,例如使用瞬态电压抑制二极管(TVS)等元件来吸收过高的电压和电流。  2. 使用保护配件:如带有静电浪涌保护功能的数据线、充电器等,可以在外部提供额外的保护。  四、上海雷卯针对手机USB接口静电浪涌保护方案  手机USB接口静电浪涌保护示意图如下:  USB接口静电保护元件参数列表:
关键词:
发布时间:2024-09-19 09:31 阅读量:1091 继续阅读>>
太阳诱电:扩充智能<span style='color:red'>手机</span>的多层型金属功率电感器
  -与本公司以往商品相比,直流叠加特性提高了20%,直流电阻降低了10%–  太阳诱电株式会社开始了多层型金属功率电感器 MCOIL™ LSCN 系列“LSCND1412FETR47ME” (1.4x1.2x0.65mm,高度为最大值)等 3 个产品的量产。  这些商品是用于智能手机的电源电路用扼流圈的功率电感器。“LSCND1412FETR47ME”与本公司以往产品“LSCND1412FETR47MC”(1.4x1.2x0.65mm)相比,在形状不变的情况下,直流叠加允许电流值增加了 20%,达到 3.6A(以往产品为 3.0A);直流电阻降低了 10%,达到 38mΩ(以往产品为 42mΩ 相比)。这将有助于推进“高功能化和多功能化日益发展的智能手机”的电源电路的高性能化。  这些商品从 2024 年 5 月开始在本公司的子公司和歌山太阳诱电(和歌山县日高郡印南町)开始了量产。  智能手机利用 AI 编辑图像和视频,翻译语音和文本等,性能日益提升。另一方面,为了在控制框体尺寸的同时,以有限的电池容量实现长时间驱动,也要求高效化。为了兼顾高性能和高效率,处理器在低电压、大电流下高速驱动的同时,还会多核化,并在每个内核上搭载电源电路,根据负载改变所使用的内核,从而实现处理能力的提升和效率的改善。这种电源电路的趋势在需要兼顾高性能化和高效化的最尖端智能手机中尤为明显,近年来采用小型、薄型且能够支持大电流的低电感产品的功率电感器的情况不断增加。  因此,太阳诱电使用具有高直流叠加特性的金属磁性材料,优化了具有小型化、薄型化优势的叠层金属类功率电感器 MCOIL™LSCN 系列的设计等,实现了“LSCND1412FETR47ME”等 3 个项目的商品化,与本公司以往产品相比,直流叠加允许电流值提高了 20%,直流电阻降低了 10%。  为满足市场需求,我们将以高功能、高可靠性、更小、更薄等方式不断扩充产品阵容。  / 用途用于智能手机等的电源电路的扼流圈。/ 规格  *1 额定电流值(Idc1)是指直流电流负荷时,电感值变化率在 30%以内的电流值(at 20℃)  *2 额定电流值(Idc2)是指直流电流负荷时,由于自身发热导致温度上升至 40℃以下时的电流值(at 20℃)  *3 额定电流值为 Idc1(max)或 Idc2(max)中较低的直流电流值  * “MCOIL”是太阳诱电株式会社在日本及其他国家的注册商标或商标。  * 文中记载的系列名称摘录用于区分产品种类
关键词:
发布时间:2024-09-13 16:07 阅读量:865 继续阅读>>
“Radisol”,一款可改善智能<span style='color:red'>手机</span>Wi-Fi天线性能的村田新产品
  株式会社村田制作所开发了村田首款(1)天线抗干扰器件‘Radisol’。Radisol是一款可配备到天线上来抑制无线性能下降的新产品,该产品已于2024年6月开始量产,并已用在Motorola Mobility LLC 2024年8月开始销售的智能手机“Edge系列”新机型。摩托罗拉通过采用Radisol改善了其智能手机Wi-Fi天线的性能。  近年来,智能手机和可穿戴终端已开始配备Wi-FiTM、Bluetooth®和GPS等很多无线通信功能,并且高密度地安装了与每种无线通信标准相对应的天线来发射和接收信号。此外,为了提高通信质量,组合使用多个天线的MIMO(2)和非地面网络(NTN(3))逐步普及,因此,终端中配备的天线数量有进一步增加的倾向。如果高密度地安装频带相近的天线,一些本应放射到空间的功率会干扰近邻天线并流入其中,导致天线的放射特性降低。通过让天线彼此保持足够的距离可以确保隔离并预防干扰,但对于智能手机和可穿戴终端来说,在狭小的外壳内确保空间非常困难。因此,迄今为止,通常使用分立元件在干扰天线上形成被称为储能电路(4)的滤波器功能来抑制天线间的干扰。然而,该方法存在一个问题:由于受到储能电路的插入损耗(5)影响,虽然受到干扰的天线的特性得到了改善,但插入储能电路一侧的天线特性会劣化。  因此,村田通过特有的陶瓷多层技术和RF电路设计技术,开发了兼顾高精度滤波器特性和低插入损耗的Radisol。通过在天线周边使用Radisol,能以较低的插入损耗来预防近距离天线之间的干扰。此外,Radisol体积小,因此有助于在智能手机和可穿戴终端等在有限空间内配备多个天线的设备中稳定无线通信功能。  主要特点  1. 优化天线特性  可以将对天线通频带的影响降至很低,并针对天线之间的干扰引起的放射效率降低采取措施。  可以提高天线效率、稳定无线通信质量并降低设备的耗电量。  2. 节省空间并改善天线之间的干扰  使用分立元件来实施干扰对策时,需要一定的空间,本产品是尺寸为0603的小型产品,单片即可满足需求,因此可以用超小的空间改善天线之间的干扰。  3. 丰富的产品阵容  使用分立元件形成储能电路时,需要花时间对常数进行调整。Radisol已经预先假设可能需要实施对策的天线组合并准备了11种类型的产品阵容。       主要规格  今后,村田将继续根据市场需求努力扩充Radisol的产品阵容,以应对更加多样化的天线组合。此外,村田还将支持电子设备的小型化和使用先进的无线技术,致力于实现繁荣富足的社会。  注释:  村田2024年8月4日调查结果。  MIMO:Multi Input Multi Output的缩写。在发射器和接收器双方使用多个天线来提高通信质量和速度的技术。  NTN:Non-Terrestrial Network的缩写。包括移动通信在内的无线通信网络的一种,指的是将地面基站、海上船舶、高空无人机(HAPS)和配置在太空的通信卫星进行多层连接而形成的网络。  储能电路:将电感器和电容器并联而形成的谐振电路。在特定的谐振频率下,能产生电感器和电容器好像都不存在的效果。在干扰对策中,它被作为将特定范围内的频率分量截断的带阻滤波器(BSF)使用。  插入损耗:信号通过传输路径时损失的功率量。
关键词:
发布时间:2024-08-28 15:05 阅读量:842 继续阅读>>
TDK超薄无线充电技术打造汽车智能<span style='color:red'>手机</span>融合新生态
  目前,汽车行业正在经历一场名为CASE(互联化、自动驾驶、共享与服务、电气化)的技术创新。由于与智能手机的融合是这一趋势的重要组成部分,因此支持车载无线充电的技术正受到关注。TDK的新型无线充电技术比传统解决方案更纤薄,充电功率高达15瓦,使智能手机在汽车上的使用更加便捷。  无线充电是汽车智能手机的应用要素  但在技术上具有挑战性  汽车和智能手机之间的互用性正在持续发展。在北美洲和欧洲,配备可“镜像”智能手机屏幕的显示/音频系统的汽车变得越来越受欢迎,且导航应用和地图也被广泛应用于此类系统中。  近年来,市场上已经有些汽车配备仅使用智能手机而不用物理钥匙(采用近场通信(NFC*1)等技术)就能开/锁车门和发动引擎的系统,并开始引起人们的关注。以这种方式连接智能手机和汽车的服务被称为虚拟钥匙,因为它们无需使用物理钥匙,预计将促进汽车共享等服务的发展。根据日本矢野经济研究所的调查,到2022年全球配备虚拟钥匙的汽车市场规模预计将扩大到5030万辆(关于虚拟钥匙的全球市场趋势和预测,日本矢野经济研究所,2019年7月17日公布)。  利用虚拟钥匙,就可以通过智能手机来识别驾驶人员,这使收集信息变得容易。这一技术有望用于车载信息娱乐系统(IVI),即提供信息和娱乐的通信系统。人们认为,在车内通话、收发信息、播放音乐、使用汽车导航等功能应成为一种更加便捷和愉悦的体验。  汽车和智能手机互用场景  随着汽车与智能手机的互用性不断发展,智能手机车载充电功能开始成为人们关注的焦点。人们对配备无线充电系统的汽车尤为感兴趣。利用此类系统,用户只需将其手机置于车内的某个位置即可给手机充电,无需像过去那样使用充电线。然而,在传统的无线充电系统中,传输电力的充电单元较为笨重,从而限制了其在车内的安装。显然,人们需要更纤薄的充电单元。但为满足虚拟钥匙的需求,还需要集成近场通信(NFC)。  汽车无线充电印刷线圈解决方案的厚度,  仅为传统产品的五分之一  TDK专为车内使用而开发的无线充电印刷线圈可解决这些问题。采用专有印刷线圈技术可大大减少线圈单元的厚度。新产品将成为同时支持磁功率分布(MPP*2)和扩展功率分布(EPP*3)的创新性产品,是无线电力传输的新技术标准。此外,TDK 的专有电镀技术将其厚度减少到只有近1mm。  过去,必须将至少三个传统绕线型线圈整合在一起才能填充所需充电区域,而新型印刷线圈只需用一个线圈即可覆盖整个充电区域。更纤薄、更少的线圈意味着可显著缩小电路板的尺寸。不仅可以在中控台上实现无线充电,还可以在车门储物格、后排座椅以及其他过去难以安装充电单元的地方实现无线充电。利用 MPP 技术,将线圈与小磁铁组合,解决了充电过程中的移位问题,使充电更精准、更快速。这也减少了在汽车运行过程中产生的偏移,使其成为理想的车载充电单元。  传统产品与新型无线充电印刷线圈比较  传统设计需要三个线圈,但TDK的新型无线充电线圈只需一个即可。将薄膜处理技术成功用于精细线制造,使其厚度减少到传统产品的近五分之一(0.76mm)。即使是新型号在传统印刷线圈上堆叠一个与磁铁兼容的圆形线圈,其厚度也只有近1mm。  无线充电印刷线圈的应用示例  如今,中控台是主要的无线充电位置,但随着无线充电印刷线圈变得越来越纤薄,充电位置选项有望扩大。  无线充电印刷线圈的另一个特点就是集成了NFC天线。过去,安装NFC天线,除了无线充电线圈外,还需要其自己的电路板。TDK通过将无线充电线圈与NFC天线集成,解决了这一问题,从而实现了超薄设计。  集成式NFC天线  将NFC天线与无线充电线圈集成,实现了超薄设计。  这种汽车无线充电印刷线圈的厚度仅为传统产品的五分之一,是TDK利用自成立以来就开始培育的铁氧体等磁性材料技术,以及HDD磁头等电子元件的薄膜处理技术的研发成果。负责这款产品的通信设备事业部主管千代宪隆讨论了无线充电印刷线圈的未来前景。  “随着智能手机的无线充电功能变得越来越重要,我们希望帮助大家创造一个不必随身携带充电器或移动电池的生活。具体来说,我们的目标就是创造更多可以为各种智能手机充电的地方,只要将手机放在那里即可,例如车内、咖啡馆或餐厅的桌子上、车站或机场等候区等。我们相信纤薄线圈将有助于我们实现目标,因为它们可以轻松安装在各种地方。此外,随着 TDK不断开发同时支持 MPP 和 EPP标准的印刷线圈,将有可能实现以高达 15 瓦的功率为所有符合 Qi 标准的智能手机充电。而不像以前那样,不同标准的智能手机需要配备不同的充电器才能以15 瓦的功率进行快速充电。我们很高兴能用我们的创新技术为大家带来便利。”  无线充电印刷线圈  这款无线充电印刷线圈更加纤薄,同时支持 EPP 和 MPP 标准,具有颠覆性。
关键词:
发布时间:2024-07-18 13:46 阅读量:915 继续阅读>>
ROHM开发出世界超小CMOS运算放大器,非常适用于智能<span style='color:red'>手机</span>和小型物联网设备等应用
  全球知名半导体制造商ROHM(总部位于日本京都市)开发出一款超小型封装的CMOS运算放大器“TLR377GYZ”,该产品非常适合在智能手机和小型物联网设备等应用中放大温度、压力、流量等的传感器检测信号。  智能手机和物联网终端越来越小型化,这就要求搭载的元器件也要越来越小。另一方面,要想提高应用产品的控制能力,就需要高精度地放大来自传感器的微小信号,因此需要在保持高精度的前提下实现小型化。在这样的背景下,ROHM通过进一步改进多年来铸就的“电路设计技术”、“工艺技术”和“封装技术”,开发出同时满足“小型”和“高精度”两种需求的运算放大器。  新产品通过进一步改进ROHM多年来铸就的“电路设计技术”、“工艺技术”和“封装技术”,成功地实现了通常认为运算放大器难以同时实现的小型化和高精度。  造成运算放大器误差的因素通常包括“输入失调电压”*1和“噪声”。两者都是与放大精度相关的项目,都可以通过扩大内置晶体管尺寸得到抑制,然而这又涉及到与小型化之间的权衡关系。通过嵌入利用ROHM自有电路设计技术开发出来的失调电压校正电路,新产品在保持晶体管尺寸不变的前提下实现了最高仅1mV的低输入失调电压。另外,新产品不仅利用ROHM自有的工艺技术改善了常见的闪烁噪声*2,还通过从元件层面重新调整电阻分量,实现了超低噪声,等效输入噪声电压密度*3仅为12nV/√Hz。此外,新产品采用了WLCSP(Wafer Level Chip Size Package)封装,该封装利用ROHM自有的封装技术将引脚间距减小到了0.3mm。与以往产品相比,尺寸减小了约69%;与以往的小型产品相比,尺寸减小了约46%。  新产品已于2024年5月开始暂以月产10万个的规模投入量产(样品价格220日元/个,不含税)。为了便于客户进行替换评估和初期评估,ROHM还提供已安装了IC可支持SSOP6封装的转换板。新产品和转换板均已开始网售,通过Ameya360电商平台均可购买。另外,还可以从ROHM官网上获取验证用的仿真模型——高精度SPICE模型“ROHM Real Model”*4。  未来,ROHM将继续致力于提高运算放大器的性能,追求更小型、更高精度、以及融入ROHM自有超低静态电流技术的更低功耗,通过更先进的应用产品控制技术,为解决社会问题持续贡献力量。  <产品主要特性>  新产品精度高且尺寸超小,并内置移动设备所需的关断功能,可减少待机期间的消耗电流。  <应用示例>    ・智能手机、配有检测放大器的小型物联网设备等  <电商销售信息>       开始销售时间:2024年5月起  电商平台:Ameya360  新产品在其他电商平台也将逐步发售。  ・产品型号:TLR377GYZ  ・已安装IC的转换板:TLR377GYZ-EVK-001  <关于高精度仿真模型“ROHM Real Model”>  在新产品验证用的仿真模型中,利用ROHM自有的建模技术,忠实地再现了实际IC的电气特性和温度特性,成功地使仿真值与IC实物的值完全一致。ROHM提供这种高精度SPICE模型“ROHM Real Model”,通过可靠的验证,可有效防止实际试制后的返工等情况发生,有助于提高应用产品的开发效率。  这种SPICE模型可通过ROHM官网获取。  <术语解说>  *1) 输入失调电压  运算放大器输入引脚间产生的误差电压称为“输入失调电压”。  *2) 闪烁噪声  半导体等电子元器件中一定会产生的一种噪声。由于功率与频率成反比,因此频率越低,闪烁噪声越大。也被称为“1/f 噪声”或“粉红噪声”。除此之外,噪声还包括热噪声(白噪声)等不同类型的噪声。  *3) 等效输入噪声电压密度  使输入引脚间短路、并将输出端出现的噪声电压密度折算到输入端后得到的值。由于放大器存在增益(放大系数),因此可以通过输出噪声电压密度除以增益来合理评估放大器本身的噪声特性。  *4) ROHM Real Model  使用ROHM自有的建模技术,成功地使仿真值与实际IC的值完全一致的高精度仿真模型。
关键词:
发布时间:2024-06-06 16:33 阅读量:828 继续阅读>>
雷卯电子:<span style='color:red'>手机</span>VBAT静电浪涌保护
村田:未来将营运重心由高阶<span style='color:red'>手机</span>转向中低阶<span style='color:red'>手机</span>市场

跳转至

/ 18

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
型号 品牌 抢购
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码