纳芯微发布NSD7315系列H桥直流有刷电机<span style='color:red'>驱动芯片</span>
  纳芯微今日宣布推出NSD7315系列大电流H桥驱动芯片,具备40V耐压能力与10A峰值输出电流,支持硬件和软件SPI两种输入接口版本,该系列芯片支持1路H桥或者2路半桥配置,可直接驱动1路直流有刷电机或2路电磁阀等负载。  NSD7315-Q1车规版本适用于多种汽车应用场景,包括车身电子锁、发动机控制系统中的电子节气门、废气再循环、分流阀,以及空气悬架CDC等应用。NSD7315工规版本也可应用于自动升降桌、电动窗帘、扫地洗地机等消费类设备。新推出的NSD7315是对纳芯微现有的NSD73xx系列H桥驱动产品在大电流方向上的进一步拓展。  产品特性  满足AEC-Q100 grade 1: –40°C~125°C TA(车规版本)  工作电压:4.5V~35V (40V耐压) ,输出电流:10A (峰值)  超低内阻 Rds(on) (上管+下管):150mΩ @TJ = 25°C, 13.5V  集成电流采样功能:比例电流输出(IPROPIx)  集成可配置的电流调节功能  可配置的控制模式:PH/EN,PWM(IN1/IN2) 和独立半桥控制  输出上升/下降时间压摆率可配置,优化降低EMI性能  低功耗模式:静态电流3μA @TJ = 25°C, 13.5V  SPI 和硬件接口选择:  – SPI接口:NSD7315S-Q1  – 硬件接口:NSD7315H-Q1  先进保护和智能诊断功能:电源欠压保护,电荷泵欠压,过流保护,负载开路检测,过热关断与过热预警,故障状态输出(nFAULT/SPI)  大电流,低温升,具备出色带载能力  NSD7315上下管总导通电阻仅为150mΩ,峰值输出电流可达10A,能够为汽车有刷电机、阀门泵类及工业电机提供大扭矩带载能力。即使在高温环境下,也具备较低且稳定的温升表现,运行持久可靠。  在半桥模式下,带载持续输出2A电流,环境温度为25℃,芯片温升稳定在24.4℃。带载持续2A电流时的芯片温升  在全桥模式下,带载持续输出5A电流,环境温度为25℃,芯片温升稳定在125°度,未触发过温保护。带载持续5A电流时的芯片温升  灵活设置输出压摆率,有效平衡大电流驱动中的温升与EMI挑战  在电机等负载驱动中通常采用硬开关方式,而大电流驱动会带来显著的电流变化率(△I/△T),进而产生较大的电磁干扰(EMI)(如下图所示)。若芯片输出的压摆率固定且较慢,会导致内部MOS开关损耗增加,导致温度升高。因此,如何在满足EMI性能的同时控制温升,是大电流驱动应用中的一大难点。  NSD7315支持根据不同负载和不同输入PWM频率,来灵活设置输出的上升/下降Slew Rate,同步配置死区时间,方便工程师在不更改硬件设计的前提下,通过软件(SPI版本)或者SR管脚(HW版本)来优化温升和EMI性能。  内部集成电流采样和电流调节,减少系统面积和成本  NSD7315集成电流采样功能,无需外部功率采样的电阻和电流运放即可实现电流检测。通过IPROPIx管脚,可按1/1100的比例输出每个半桥上管MOS的正向导通电流(即从Drain到Souce端的电流)。若将IPROPI1和IPROPI2管脚连接在一起,则输出电流为两个上管的正向电流之和(如下图所示)。NSD7315内置电流镜  同时,NSD7315还集成了电流调节功能,当输出电流超过内部设定的电流阈值时,芯片会自动执行限流功能,以防止在电机启动或堵转等工况下出现过大负载电流,从而避免芯片过热和电机损坏。  具备负载开路诊断功能,精准定位反馈故障,无需人工排查  NSD7315支持输出端负载开路诊断功能,可在驱动芯片待机模式和工作模式下分别检测负载状态,帮助系统在电机运转前或运行中及时发现异常,提升系统可靠性。该功能支持两种检测模式:待机模式检测(OLP)和工作模式检测(OLA)。  待机模式下的负载开路检测(OLP):芯片通过依次使能内部的上拉和下拉电流源,测量流经内部上/下拉电阻的电压,并与内部比较器的电压阈值进行比对,从而判断输出是否存在开路。  工作模式下的负载开路检测(OLA):芯片通过检测死区时间内高边续流MOS管体二极管的导通压降,并与固定的VOLA电压阈值比较,实现实时开路检测。  OLA模式检测电路  封装与选型  纳芯微H桥直流有刷电机驱动NSD7315系列现已全面量产,作为NSD73xx系列的重要拓展,该系列具备良好的通用性与可靠性,适用于多种典型负载需求。NSD7315系列的推出,进一步完善了纳芯微在电机驱动领域的产品布局,为客户提供更高集成度与系统适配性解决方案,助力终端产品快速落地。NSD73xx系列选型表
关键词:
发布时间:2025-07-30 10:50 阅读量:201 继续阅读>>
线易微:CMP6713HV隔离电源<span style='color:red'>驱动芯片</span>
新洁能推出NSG4427 2A 双通道 低侧同相栅极<span style='color:red'>驱动芯片</span>
润石科技推出高压车规级LED<span style='color:red'>驱动芯片</span> RS3703-Q1
  润石科技RS3703-Q1是一款三通道高侧LED驱动芯片,采用车规级工艺,最大化安全余量设计,具有高达45V的耐压承受能力,每一通道均提供最大150mA的驱动电流,支持PWM亮度调光,并提供全面的自诊断功能,包括LED开路、对地短路以及单个LED短路检测。  RS3703-Q1主要设计用于应用于车尾灯、高位刹车灯、侧标志灯驱动,以及车内小灯的驱动,比如各种指示灯、顶灯、阅读灯、氛围灯。  主要特性如下:  Ø 输入电压支持4.5V~40V,极限耐压高达45V  Ø 通过外部分流电阻实现热共享功能  Ø 三通道高精度电流调光  每通道最大150mA输出电流  全温度范围内±5%控制精度  通过外部电阻设置电流  支持PWM独立调光  支持非板载亮度分级电阻  支持外部NTC温度检测进行电流调节  Ø 低Dropout电压,315mV@150mA  Ø 提供自诊断和保护功能:  LED开路,具有自动恢复功能  LED对地短路检测,具有自动恢复功能  单LED短路检测及自动恢复  支持自诊断并具有可调阈值  可配置为连带失效或仅失效通道关闭的故障总线(N-1)  支持热关断  Ø 工作结温范围:-40°C ~ 150°C  图1 典型应用电路  乘用车各部件的供电目前仍然以12V电压总线为标准,接口热插拔瞬间或者传统油车在打火瞬间电池的浪涌电压,在电路设计时工程师都会重点防范,选用高耐压的降压芯片会有更加可靠的安全余量。RS3703-Q1高达45V的耐压余量提供了可靠的应对能力,可以轻松应对这些浪涌电压的冲击。  图2 封装和管脚定义
关键词:
发布时间:2025-04-09 10:10 阅读量:428 继续阅读>>
森国科推出行业领先的散热风扇<span style='color:red'>驱动芯片</span>G1287A
  森国科推出一款单相单线圈无刷直流电机散热风扇驱动单芯片G1287A,通过PWM直接输入模式,高效、精确地控制直流无刷马达运转速度,外围元件少,高度集成霍尔、过温保护、欠压保护、过电流保护等机制,面向台式电脑电源、CPU/VGA散热风扇、家电产品等市场提供高性能、高性价比的电机驱动服务。  G1287A 采用贴片式SOP8直角封装,在体积和重量上极具优势,灵活性强、满足多种集成电路的使用,符合RoHS规范及无铅、无卤。设计上优化了无刷直流风扇马达的噪声性能,实现了马达低噪声、低抖动运转。  G1287A满足工作电源电压范围为 4V 至 24 V,可以轻松驱动额定电流高达500mA(连续)的冷却风扇。该芯片可在-40 ℃~125℃的温度下工作。并且具备以下几大特色:  内置霍尔传感器  通过内置霍尔,减少了外部所需元器件,简化了外部电路,提升了芯片的可靠性,丰富了芯片的应用场景,适应小型化需求。  欠压保护  输入欠压保护,内置过冲吸收电路,无需外接齐纳管。  PWM振荡器输出频率  输出PWM频率由内部时钟电容值大小决定。其典型值为31kHz。  软启动时间  软启动控制模式能够有效抑制马达启动瞬间的尖峰浪涌电流,还能保证低转速运转时马达可靠启动。  过温、过流保护  (TSD) G1287A 过温保护功能。TSD 有温度滞回。  过流保护(OCP) 流经马达线圈上的电流被内置电流侦测器件侦测,通过侦测其大小来阻止其大于设定的电流 限制值。电流限制值大小由芯片内部限制电压和内部电流侦测器件决定。内置电流限制典型 值为 1.0A。  防堵转功能  如果马达被外力或者障碍物卡住,则过驱动电流会引起温度升高而损坏马达,为了防止此类现象,芯片内置锁定保护电路关断内部功率管,切断马达驱动电流。几秒钟后自动重启电路将尝试重新启动。       典型应用框图:  系统框图:
关键词:
发布时间:2025-03-28 14:37 阅读量:521 继续阅读>>
稳先微重磅发布汽车<span style='color:red'>驱动芯片</span>智能高边开关WS7系列
  近几年,新能源汽车高速发展,用车浪潮蔓延全球,我国新能源汽车占有量连续9年居全球前列,2023年全年市占率达37.7%,市场规模可观,并显现出以下特点:电车产品对比油车优势明显、消费者接受度高、市场规模庞大、发展潜力可观。伴随着电动化与自动驾驶技术的发展,汽车半导体行业也进而掀起一场革新,半导体对汽车的重要性与日递增,车身功能的叠加也促使业内将目光转向研发高集成度的芯片产品,出于新能源汽车渗透率的提高、维护成本的减少和市场需求的高度匹配,高边开关(高边驱动)成为电动汽车智能化、电控化的产品应用方向。  在市场需求的基础上,深圳市稳先微电子有限公司(下称“稳先微”)重磅发布汽车驱动芯片新品——智能高边开关WS7系列,共计9款产品:单通道高边开关芯片WS型、双通道高边开关芯片WSD型和四通道高边开关芯片WSQ型,此次推出的产品具有优秀的过温、过流、欠压保护等性能,满足在汽车使用过程中对更高的安全性与稳定性的需求。  高边开关WS7系列解决传统弱项,实现升级替代  稳先微高边开关新品解决了传统保险丝和继电器带来的灵活性不足、功耗高以及容易造成EMC干扰等问题,在复杂的汽车电子系统中不仅能实现对负载的驱动与关闭,也能达成对负载的多功能、更高程度的保护与诊断,在电热丝加热、电力传输和功率传输这三大方面具备明显优势。  高边开关WS7系列产品摒弃了汽车模块与蓄电池间单线制的传统连接,大大节约了两者之间的汽车线束,减少无效空间的占用,从而减轻车身重量,降低故障发生率。涉及到行车安全这一方面,高边开关能协助汽车的中央控制器实时掌控各个模块的运行状况,避免每一个模块受到电气环境干扰的风险,产品也在模块与模块之间共享保护和滤波模块,提供稳定、安全的能源,为各线路之间的信号传达“保驾护航”,因此,高度的安全性和可靠性是产品的核心优势,帮助新能源汽车向轻量化、高智能、高安全的发展方向升级。  而随着新能源汽车三大发展方向的升级,应用到汽车的高边驱动产品数量在不断递增,对产品的集成度、可靠性、性能表现日益严苛。稳先微发布的单通道、双通道、四通道产品能够满足车企的研发需求,同时将不断进行产品迭代和功能创新,和广大车企商业伙伴共同进步,共创具有开拓性意义的新智能汽车时代。  稳先微智能高边开关WS7系列的产品介绍  稳先微的智能高边开关WS7系列通过不同通道数对汽车进行控制、诊断与保护,驱动12V汽车的接地负载应用,并发挥先进的保护、诊断功能,包括可配置闭锁功能的过热关断保护、动态过温保护、负载过流保护、高精度比例负载电流检测、输出过载和对地短路警报以及对VCC短路诊断和OFF状态开路诊断等。整个智能高边开关系列产品可用于驱动车身控制域中的各种阻性、感性及容性负载的驱动,涵盖了车内饰灯、头尾灯、座椅和方向盘及后视镜加热、电磁阀、门锁、电机等多种应用场景。  选型与关键参数  单通道高边开关芯片WS型:  双通道高边开关芯片WSD型:  四通道高边开关芯片WSQ型:  稳先微发挥产业链上下游整合优势,掌握先进的垂直BCD工艺平台、平面BCD工艺平台、UHV工艺平台和SGT功率器件平台,具备丰富的数模混合设计能力和先进的封装设计能力,推出高功率、高性能、高稳定性的能量链保护芯片解决方案,产品覆盖汽车电子、工业电源、高端消费电子领域。于2021年成立无锡汽车电子创新中心,组建高水平的汽车芯片研发团队,服务于16家头部Tier1和19家知名车企,获得客户的一致好评。
关键词:
发布时间:2024-12-19 10:57 阅读量:834 继续阅读>>
纳芯微电子:窄脉宽信号对<span style='color:red'>驱动芯片</span>的影响及解决方案
  01、窄脉宽的来源  驱动芯片在各种电力电子系统中有着广泛的应用,例如整流器、DC-DC变换器、逆变器和变频器等,其工作频率和占空比范围在不同系统中各不相同。  在常规整流器的PFC部分,根据输入电压的范围不同,其下管的占空比可以在0%到100%之间变化;  在常见的DC-DC变换器中,开机时通常会有缓启功能,其输出脉宽会从零开始逐步增大;另外,当输出负载或输入电压发生瞬态跳变时,输出会出现瞬态变化,系统环路会根据输出电压的变化来调整驱动器的输入脉宽,在调整过程中,可能出现极大或极小的输出脉宽;  在桥式逆变器中,当输出电压达到最大或最小峰值时,也可能出现极大和极小的输出脉宽。  图1 正负向窄脉宽  如果这些极大或极小脉宽没有得到有效限制,可能会影响驱动器的稳定工作;严重情况下甚至会导致驱动器或系统失效。  02、正负窄脉宽对驱动芯片的影响  下图2所示,是一种常见的MOSFET驱动电路,虚线框内为一个输出通道的结构示意图,其输出采用PMOS+NMOS结构。驱动器在控制功率管MOSFET M1开通和关断时,会对功率MOSFET M1的栅极拉出和灌入电流。在窄脉宽开通情况下,驱动器收到关断指令会将MOSFET M1关断,此时MOSFET M1的开通过程还没有完成,驱动器的输出仍然维持在较高的电流,当该电流突然变化,在PCB走线寄生电感和驱动器内部寄生电感的共同作用下,会在驱动器的输出引脚产生很大的电压应力,该应力可能导致芯片失效。  为了分析和验证,将MOSFET的门极输入电容采用电容C1来代替,如下图3所示。  考虑到PCB和芯片内部的寄生电感,其等效电路如下图4所示,其中L1、L4和L5为芯片内部寄生电感(Lbonding),L2和L3为PCB上的寄生电感(LPCB)。  ➱下面将对不同脉宽下驱动器的应力产生和影响进行简要介绍。  1)正向窄脉宽的状态分析  t0~t1期间,驱动芯片内部的NMOS M3导通,PMOS M2关断,OUT输出为低,此时驱动回路中的Isrc和Isnk电流均为零;  t1时刻,NMOS M3关断,PMOS M2导通,OUT输出拉高,给负载电容C1充电,Isnk电流为零;  t2时刻,PMOS M2关断,NMOS M3导通,OUT输出被拉低,此时驱动电流Isrc不为零。该电流在芯片内部寄生电感和PCB走线寄生电感的共同作用下,对PMOS M2和NMOS M3的寄生输出电容进行充放电,从而导致OUT出现负向过冲电压。驱动器内部输出Pad的电压应力可以用如下公式(1)进行估算。  其中各参数的定义如下:  VGate: MOSFET的栅极电压  Lbonding:IC内部的键合线产生的寄生电感,通常约为5nH  LPCB:驱动器输出引脚到栅极PCB引线的寄生电感  RG:MOSFET的栅极驱动电阻  2)正常脉宽的状态分析  t0~t1期间,驱动芯片内部NMOS M3导通,PMOS M2关断,OUT输出为低,驱动回路中Isrc和Isnk电流为零;  t1时刻,NMOS M3关断后,PMOS M2导通,OUT输出拉高,负载电容C1充电,当电容C1充满电后,Isrc恢复到0,Isnk电流保持为零;  t2时刻,PMOS M2关断后,NMOS M3开通,OUT输出被拉低,负载电容C1放电,当电容C1放电结束后,Isnk电流恢复到零;  OUT输出转换过程中,lsrc或Isnk都是由零上升或下降到峰值,然后恢复到零,OUT输出没有明显的正向或负向过冲电压。  3)负向窄脉宽的状态分析  t0~t1期间,驱动芯片内部PMOS M2导通,NMOS M3关断,OUT输出为高,驱动回路中Isrc和Isnk电流为零;  t1时刻,NMOS M3导通,OUT输出拉低,负载电容C1放电;  t2时刻,NMOS M3关断,PMOS3开通,OUT输出被拉高,此时驱动回路中电流Isnk不为零,该电流在芯片内部的寄生电感和PCB走线的寄生电感的共同作用下,对PMOS M2和NMOS M3的寄生输出电容进行充放电,导致OUT输出出现显著的正向过冲电压。  实际电路验证  为了验证窄脉宽的影响,本实验选择了一款最大额定电压为20V的驱动芯片,并按照上图3所示的实验电路进行测试。  实验中,芯片供电电压设置为15V,负载电容C1为27nF,输入信号频率为100kHz,脉冲宽度分别为20ns、2μs和9.98μs(对应20ns负向窄脉宽)。  在相同脉宽下,通过调整驱动电阻R1的大小,来改变开通和关断时的驱动电流和电流变化率,得到实验结果如下所示,图中黄色线条表示输入信号,绿色线条表示输出信号。  表2 实际电路验证结果  如上结果所示,当驱动电阻为1Ω时,20ns的正向窄脉宽会导致-9V的负向过冲;同样,20ns的负向脉宽会导致27.4V的正向过冲,超过了芯片的额定值,会存在失效风险。正常脉宽下,OUT输出没有正负过冲现象。此外,还可以看出,在相同脉宽输入时,驱动电流越大,输出脚的正向或负向电压应力越高;因此减小驱动电流可以有效减小窄脉宽产生的正负过冲电压。  03、解决方案和建议  通过上面的分析和验证可以看出窄脉宽下过大的驱动电流会对输出应力产生严重影响。系统应用中为了避免驱动器输出应力超标,建议客户从以下几个方面进行优化和解决。  PCB布局时尽量将驱动器与功率管就近放置,减小驱动器输出引脚到功率管门极之间的走线电感。  驱动器的供电电容尽可能靠近芯片的电源引脚,且同层放置,减小因过孔和走线产生的寄生电感。  在系统应用中,对最大和最小驱动输出脉宽进行限制,确保开通和关断前一刻驱动输出电流已降为零,避免输出出现过大的正向或负向过冲电压。  适当调整驱动电阻,减小窄脉宽驱动回路中的电流和电流变化率。
关键词:
发布时间:2024-09-18 17:04 阅读量:898 继续阅读>>
AMEYA360:纳芯微GaN HEMT<span style='color:red'>驱动芯片</span>NSD2017助力解决激光雷达应用挑战
  自动驾驶是新能源汽车智能化的重要发展方向,而具备强感知能力的激光雷达则是L2+及以上级别自动驾驶不可或缺的硬件设备。纳芯微的单通道高速栅极驱动芯片NSD2017,专为激光雷达发射器中驱动GaN HEMT(高电子迁移率晶体管)而设计,助力应对激光雷达应用中的各项挑战。  1)激光雷达系统结构介绍  自动驾驶中使用的激光雷达通常采用DToF(Direct Time-of-Flight)测距方式,即通过直接测量激光的飞行时间来进行距离测量和地图成像。下图为DToF激光雷达系统的典型结构,其中信号处理单元通过记录激光发射器发出光脉冲的时刻,以及激光接收器收到光脉冲的时刻,根据时间间隔和光速即可计算出目标距离。  激光雷达为了实现高分辨率与宽检测范围,需要极窄的激光脉冲宽度、极快的激光脉冲频率和极高的激光脉冲功率,这对激光发射器中功率开关器件的性能提出了更高的要求。相比传统的Si MOSFET,GaN HEMT具有更优越的开关特性,非常适合DToF激光雷达应用。GaN HEMT的性能表现依赖于高速、高驱动能力和高可靠性的GaN栅极驱动芯片,NSD2017凭借其优异的产品特性,充分发挥了GaN HEMT在激光雷达中的优势。  2)NSD2017产品特性  - 推荐工作电压:4.75V~5.25V  - 峰值拉灌电流:7A/5A  - 最小输入脉宽: 1.25ns  - 传输延时: 2.6ns  - 脉宽畸变: 300ps  - 上升时间@220pF负载: 650ps  - 下降时间@220pF负载: 850ps  - 封装:DFN6(2mm*2mm),WLCSP(1.2mm*0.8mm)  - 满足AEC-Q100车规认证  - 同相和反相输入引脚可用于产生极窄脉宽  - 具备UVLO、OTSD保护  3) NSD2017关键性能应对激光雷达应用挑战  1. 大电流驱动能力,支持激光雷达远距离探测  激光雷达的远距离探测能力使自动驾驶车辆能够提前发现障碍物并及时避让,从而提升自动驾驶速度上限。为实现更远的探测距离,通常需要在保证不损伤人眼的前提下,采用更大功率的激光发射器,这就需要更大电流的GaN HEMT以及驱动能力更高的驱动芯片。纳芯微的NSD2017具备7A峰值拉电流和5A灌电流能力,可用于驱动大电流GaN HEMT,从而产生高峰值激光功率,实现远距离探测。  2. 极窄输入脉宽,满足激光雷达高测距精度要求  DToF激光雷达通过测量脉冲激光发射和接收的时间间隔来实现测距,但是如果来自两个相邻目标的反射光脉冲发生重叠,系统将无法分辨出这两个相邻目标的距离信息。为了满足厘米级别的距离分辨率的要求,激光雷达需要极窄的光脉冲宽度,通常低至几纳秒,并且具有快速的上升沿和下降沿。NSD2017的最小输入脉宽典型值仅为1.25ns,且开启和关断路径具有优异的延迟匹配,输入到输出的脉冲宽度失真低至300ps。此外在220nF负载下,NSD2017的上升时间典型值为650ps,下降时间典型值为850ps,也有利于产生更窄的脉冲激光。  3. 小封装和高频开关,优化激光雷达角分辨率与点频性能  激光雷达的角分辨率表示扫描过程中相邻两个激光点之间的角度差,点频则表示在三维视场内每秒发出的激光点数。一般来说,激光雷达的角分辨率越小,相邻点云之间越密集,往往点频越高,激光雷达的感知能力也就越强。为实现更高的角分辨率和点频,激光雷达需要布置更多的激光发射器,因而对驱动芯片的封装尺寸提出了更高的要求。NSD2017车规级芯片不但提供DFN (2mm*2mm) 封装,还可以提供更小尺寸的WLCSP (1.2mm*0.8mm) 封装。NSD2017支持最高60MHz开关频率,传输延时典型值低至2.6ns,确保了系统控制环路具有足够快的响应时间,也有利于提高激光雷达点频性能。  4. 强抗干扰能力,保证激光雷达的安全可靠  在激光发射器中,为了快速开关GaN HEMT,栅极驱动芯片外部的栅极串联电阻通常设置为零;栅极驱动芯片的峰值拉电流和灌电流,会通过芯片的封装寄生电感和PCB寄生电感,引起芯片内部的VDD和GND产生较大的抖动,从而可能导致驱动电路工作异常。NSD2017通过优化封装寄生电感,并且在芯片内部集成去耦电容,有效地滤除驱动电路抽载产生的高压毛刺,从而提升了抗噪声能力。此外,NSD2017具备过温保护和欠压保护功能,保证激光雷达安全可靠地工作。  4)总结  GaN HEMT栅极驱动芯片NSD2017具备高开关频率、低传输延时、极窄脉宽、低失真、强驱动能力和抗干扰等特性,采用小尺寸车规级封装,能够助力应对激光雷达各项应用挑战,提升感知能力,确保其安全可靠运行。
关键词:
发布时间:2024-07-17 13:10 阅读量:1031 继续阅读>>
纳芯微电子GaN HEMT<span style='color:red'>驱动芯片</span>NSD2017助力应对激光雷达应用挑战
  自动驾驶是新能源汽车智能化的重要发展方向,而具备强感知能力的激光雷达则是L2+及以上级别自动驾驶不可或缺的硬件设备。纳芯微的单通道高速栅极驱动芯片NSD2017,专为激光雷达发射器中驱动GaN HEMT(高电子迁移率晶体管)而设计,助力应对激光雷达应用中的各项挑战。  一、激光雷达系统结构介绍  自动驾驶中使用的激光雷达通常采用DToF(Direct Time-of-Flight)测距方式,即通过直接测量激光的飞行时间来进行距离测量和地图成像。下图为DToF激光雷达系统的典型结构,其中信号处理单元通过记录激光发射器发出光脉冲的时刻,以及激光接收器收到光脉冲的时刻,根据时间间隔和光速即可计算出目标距离。  DToF激光雷达典型系统  激光雷达为了实现高分辨率与宽检测范围,需要极窄的激光脉冲宽度、极快的激光脉冲频率和极高的激光脉冲功率,这对激光发射器中功率开关器件的性能提出了更高的要求。相比传统的Si MOSFET,GaN HEMT具有更优越的开关特性,非常适合DToF激光雷达应用。GaN HEMT的性能表现依赖于高速、高驱动能力和高可靠性的GaN栅极驱动芯片,NSD2017凭借其优异的产品特性,充分发挥了GaN HEMT在激光雷达中的优势。  二、NSD2017产品特性  推荐工作电压:4.75V~5.25V  峰值拉灌电流:7A/5A  最小输入脉宽: 1.25ns  传输延时: 2.6ns  脉宽畸变: 300ps  上升时间@220pF负载: 650ps  下降时间@220pF负载: 850ps  封装:DFN6(2mm*2mm),WLCSP(1.2mm*0.8mm)  满足AEC-Q100车规认证  同相和反相输入引脚可用于产生极窄脉宽  具备UVLO、OTSD保护  NSD2017典型应用框图  三、NSD2017关键性能应对激光雷达应用挑战  1)大电流驱动能力,支持激光雷达远距离探测  激光雷达的远距离探测能力使自动驾驶车辆能够提前发现障碍物并及时避让,从而提升自动驾驶速度上限。为实现更远的探测距离,通常需要在保证不损伤人眼的前提下,采用更大功率的激光发射器,这就需要更大电流的GaN HEMT以及驱动能力更高的驱动芯片。纳芯微的NSD2017具备7A峰值拉电流和5A灌电流能力,可用于驱动大电流GaN HEMT,从而产生高峰值激光功率,实现远距离探测。  2)极窄输入脉宽,满足激光雷达高测距精度要求  DToF激光雷达通过测量脉冲激光发射和接收的时间间隔来实现测距,但是如果来自两个相邻目标的反射光脉冲发生重叠,系统将无法分辨出这两个相邻目标的距离信息。为了满足厘米级别的距离分辨率的要求,激光雷达需要极窄的光脉冲宽度,通常低至几纳秒,并且具有快速的上升沿和下降沿。NSD2017的最小输入脉宽典型值仅为1.25ns,且开启和关断路径具有优异的延迟匹配,输入到输出的脉冲宽度失真低至300ps。此外在220nF负载下,NSD2017的上升时间典型值为650ps,下降时间典型值为850ps,也有利于产生更窄的脉冲激光。  3)小封装和高频开关,优化激光雷达分辨率与点频性能  激光雷达的角分辨率表示扫描过程中相邻两个激光点之间的角度差,点频则表示在三维视场内每秒发出的激光点数。一般来说,激光雷达的角分辨率越小,相邻点云之间越密集,往往点频越高,激光雷达的感知能力也就越强。为实现更高的角分辨率和点频,激光雷达需要布置更多的激光发射器,因而对驱动芯片的封装尺寸提出了更高的要求。NSD2017车规级芯片不但提供DFN (2mm*2mm) 封装,还可以提供更小尺寸的WLCSP (1.2mm*0.8mm) 封装。NSD2017支持最高60MHz开关频率,传输延时典型值低至2.6ns,确保了系统控制环路具有足够快的响应时间,也有利于提高激光雷达点频性能。  4)强抗干扰能力,保证激光雷达的安全可靠  在激光发射器中,为了快速开关GaN HEMT,栅极驱动芯片外部的栅极串联电阻通常设置为零;栅极驱动芯片的峰值拉电流和灌电流,会通过芯片的封装寄生电感和PCB寄生电感,引起芯片内部的VDD和GND产生较大的抖动,从而可能导致驱动电路工作异常。NSD2017通过优化封装寄生电感,并且在芯片内部集成去耦电容,有效地滤除驱动电路抽载产生的高压毛刺,从而提升了抗噪声能力。此外,NSD2017具备过温保护和欠压保护功能,保证激光雷达安全可靠地工作。  四、总结  GaN HEMT栅极驱动芯片NSD2017具备高开关频率、低传输延时、极窄脉宽、低失真、强驱动能力和抗干扰等特性,采用小尺寸车规级封装,能够助力应对激光雷达各项应用挑战,提升感知能力,确保其安全可靠运行。
关键词:
发布时间:2024-07-01 10:50 阅读量:1222 继续阅读>>
稳先微新品 | 汽车<span style='color:red'>驱动芯片</span>——智能高边开关WS7系列重磅发布
  近几年,新能源汽车高速发展,用车浪潮蔓延全球,我国新能源汽车占有量连续9年居全球前列,2023年全年市占率达37.7%,市场规模可观,并显现出以下特点:电车产品对比油车优势明显、消费者接受度高、市场规模庞大、发展潜力可观。伴随着电动化与自动驾驶技术的发展,汽车半导体行业也进而掀起一场革新,半导体对汽车的重要性与日递增,车身功能的叠加也促使业内将目光转向研发高集成度的芯片产品,出于新能源汽车渗透率的提高、维护成本的减少和市场需求的高度匹配,高边开关(高边驱动)成为电动汽车智能化、电控化的产品应用方向。  在市场需求的基础上,深圳市稳先微电子有限公司(下称“稳先微”)重磅发布汽车驱动芯片新品——智能高边开关WS7系列,共计9款产品:单通道高边开关芯片WS型、双通道高边开关芯片WSD型和四通道高边开关芯片WSQ型,此次推出的产品具有优秀的过温、过流、欠压保护等性能,满足在汽车使用过程中对更高的安全性与稳定性的需求。  高边开关WS7系列解决传统弱项,实现升级替代  稳先微高边开关新品解决了传统保险丝和继电器带来的灵活性不足、功耗高以及容易造成EMC干扰等问题,在复杂的汽车电子系统中不仅能实现对负载的驱动与关闭,也能达成对负载的多功能、更高程度的保护与诊断,在电热丝加热、电力传输和功率传输这三大方面具备明显优势。  高边开关WS7系列产品摒弃了汽车模块与蓄电池间单线制的传统连接,大大节约了两者之间的汽车线束,减少无效空间的占用,从而减轻车身重量,降低故障发生率。涉及到行车安全这一方面,高边开关能协助汽车的中央控制器实时掌控各个模块的运行状况,避免每一个模块受到电气环境干扰的风险,产品也在模块与模块之间共享保护和滤波模块,提供稳定、安全的能源,为各线路之间的信号传达“保驾护航”,因此,高度的安全性和可靠性是产品的核心优势,帮助新能源汽车向轻量化、高智能、高安全的发展方向升级。  而随着新能源汽车三大发展方向的升级,应用到汽车的高边驱动产品数量在不断递增,对产品的集成度、可靠性、性能表现日益严苛。稳先微发布的单通道、双通道、四通道产品能够满足车企的研发需求,同时将不断进行产品迭代和功能创新,和广大车企商业伙伴共同进步,共创具有开拓性意义的新智能汽车时代。  稳先微智能高边开关WS7系列的产品介绍  稳先微的智能高边开关WS7系列通过不同通道数对汽车进行控制、诊断与保护,驱动12V汽车的接地负载应用,并发挥先进的保护、诊断功能,包括可配置闭锁功能的过热关断保护、动态过温保护、负载过流保护、高精度比例负载电流检测、输出过载和对地短路警报以及对VCC短路诊断和OFF状态开路诊断等。整个智能高边开关系列产品可用于驱动车身控制域中的各种阻性、感性及容性负载的驱动,涵盖了车内饰灯、头尾灯、座椅和方向盘及后视镜加热、电磁阀、门锁、电机等多种应用场景。  稳先微发挥产业链上下游整合优势,掌握先进的垂直BCD工艺平台、平面BCD工艺平台、UHV工艺平台和SGT功率器件平台,具备丰富的数模混合设计能力和先进的封装设计能力,推出高功率、高性能、高稳定性的能量链保护芯片解决方案,产品覆盖汽车电子、工业电源、高端消费电子领域。于2021年成立无锡汽车电子创新中心,组建高水平的汽车芯片研发团队,服务于16家头部Tier1和19家知名车企,获得客户的一致好评。
关键词:
发布时间:2024-03-13 09:17 阅读量:892 继续阅读>>

跳转至

/ 2

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码