UltraSoC launches “any processor” lockstep solution for safety-critical systems

Release time:2018-12-03
author:Ameya360
source:newelectronics
reading:7970

  UltraSoC has launched the Lockstep Monitor, a hardware-based, scalable solution, that helps functional safety by checking that the cores at the heart of a critical system are operating reliably, safely and securely.

  UltraSoC’s flexible IP supports all common lockstep/redundancy architectures, including full dual-redundant lockstep, split/lock, master/checker, and voting with any number of cores or subsystems.

  The Lockstep Monitor can support any processor architecture or other subsystem, including custom logic or accelerators. Lockstep operation is needed for safety standards such as ISO26262 for automotive, IEC 61508, EN50126/8/9 and CE 402/2013.

  The Monitor consists of a set of configurable semiconductor IP (SIP) blocks that are protocol aware and can be used to cross-check outputs, bus transactions, code execution and even register states, between two or more redundant systems. It can be used with any processor architecture, including those – such as the emerging RISC-V architecture – which lack native support for lockstep configurations. In addition to traditional processor cores, it can also check other subsystems or accelerators. Because it is implemented in hardware, it responds at wire speed and imposes no execution overhead on the host system.

  Unlike more traditional approaches, the Lockstep Monitor includes flexible, run-time configurable embedded intelligence, allowing the SoC designer to tailor the monitoring and response system precisely to the application.

  Monitoring can be implemented at a variety of levels of granularity: at the subsystem level (comparing the outputs of the two processors); at the transaction level (for example comparing bus traffic); at the instruction level, using UltraSoC’s advanced instruction trace capability; and at the most fundamental hardware-level, checking processor internal states or register contents.

  By embedding intelligence in the system, UltraSoC also allows more sophisticated comparisons between the operation of the lockstep processors than can be achieved with traditional solutions.

  RISC-V is gaining increasing traction in safety-critical applications, particularly in the automotive industry. However, the RISC-V ecosystem lacks support for the functional safety and security principles – such as lockstep operation – mandated by global standards such as ISO26262 for functional safety, J3061 for cybersecurity, IEC 61508, EN50126/8/9 and CE 402/2013.

  UltraSoC’s Lockstep Monitor allows any RISC-V system, whether using open source or commercial cores, to incorporate sophisticated safety capabilities.

  Lockstep systems employ two or more processor subsystems running the same code in a redundant backup configuration. The cores may be clock-cycle synchronised, or offset by a small number of cycles, an arrangement that protects against transient errors in the surrounding system.The outputs, code execution or bus traffic from the subsystems are compared and if the results differ, an error can be signalled. Lockstep systems with two processors are typically configured in a ‘master/checker’ arrangement; those with more than two processors may use ‘voting’ or other redundancy schemes.

  More sophisticated “split/lock” processor arrangements may allow the lockstep function to be dynamically engaged and disengaged, allowing the cores to run in redundant mode or to run different code for higher performance.


("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
model brand To snap up
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code