赛米控丹佛斯推出配备罗姆1200V IGBT的功率模块

Release time:2023-05-18
author:AMEYA360
source:网络
reading:2221

  赛米控丹佛斯和罗姆开发SiC(碳化硅)功率模块方面,已有十多年的良好合作关系。此次,赛米控丹佛斯向低功率领域推出的功率模块中,采用了罗姆的新产品——1200V IGBT “RGA系列”。今后,双方将继续保持紧密合作,全力响应全球电机驱动用户的需求。

赛米控丹佛斯推出配备罗姆1200V IGBT的功率模块

  ROHM Co., Ltd. 董事 常务执行官 CFO 伊野和英 (左)

  赛米控丹佛斯 CEO Claus A. Petersen (右)

  随着全球电动化技术的快速发展,对功率模块的需求已经达到了前所未有的程度,相关产品的市场规模急剧扩大,几乎超出了芯片制造商的产能提升速度。在这样的背景下,罗姆开发出适用于工业设备的1200V IGBT “RGA系列”产品,成为业内先进的IGBT解决方案,从而进一步扩大了对赛米控丹佛斯的裸芯片供应范围。

  赛米控丹佛斯计划推出额定电流等级10A~150A的功率模块“MiniSKiiP?”,这款功率模块中配备了罗姆的1200V IGBT “RGA系列”芯片。MiniSKiiP?功率模块采用无铜底板和弹簧连接这两大特色技术,并融合了非常适用于电机驱动市场的RGA系列的优势,从而成为低功率领域的理想解决方案。另外,MiniSKiiP?系列始终采用最新一代的IGBT,而且还通过统一封装高度,确保产品安装的便利性,因而在全球电机驱动市场得以广泛应用。

  不仅如此,针对PCB连接采用Press-Fit引脚和焊接方式的应用,赛米控丹佛斯还推出了采用行业标准封装的“SEMITOP? E”系列产品,由于其结构与现有的IGBT模块引脚兼容,因此也可使用罗姆的1200V IGBT“RGA系列”。此外,“SEMITOP?”系列中预计还会新增将三相逆变电路集成于一个模块的六单元结构产品,以及整流器-逆变器-制动器复合电路结构产品。

  罗姆集团 董事 常务执行官 CFO 伊野和英 表示:

  “此次,赛米控丹佛斯采用的RGA系列产品,其最高结温(Tj,max)高达175℃,是罗姆新设计的弱穿通结构的沟槽栅IGBT。该系列产品在导通、开关和热特性方面,均针对最新的中低功率工业驱动应用进行了优化。另外,在电机驱动应用中,当产品承受过负载时,与业内现有的IGBT相比,其过电流承受能力具有显著优势。该系列产品还与业内的常规产品兼容,替换安装非常容易。”

  赛米控丹佛斯 CEO Claus A. Petersen 表示:

  “近年来,电力电子行业已经逐渐解决了供应问题,并且在不断吸取之前的相关教训。显而易见,半导体芯片和模块制造的多元化是实现功率模块真正意义上的‘多源供应’的前提。”

  赛米控丹佛斯 常务董事 工业应用领域分管副总裁 Peter Sontheimer 表示:

  “在1200V IGBT产品上,我们找到了值得信赖的制造商推出的IGBT产品。罗姆的1200V IGBT RGA系列产品可以替换业内现有的IGBT,只需对栅极电阻稍作调整,就能实现高度类似的目标工作。”

  关于赛米控丹佛斯

  赛米控丹佛斯是电力电子领域的全球技术领导者,产品包括半导体器件、功率模块、模组和系统等。

  随着全球电动化技术的快速发展,赛米控丹佛斯所拥有的各项技术的重要性也越发凸显。公司通过向汽车、工业设备、可再生能源等应用领域提供创新型解决方案,助力实现更具可持续性、能效更高的社会,为大幅削减当今社会所面临的最大课题之一——CO2排放量贡献着力量。公司重视每一名员工,同时在创新、技术、能力和服务方面加大投资,通过提供业内顶级的产品性能和具有可持续性的未来,不断为客户创造价值。

  赛米控丹佛斯是由赛米控和丹佛斯硅动力于2022年合并而成的私营企业,在全球各地拥有28家子公司,员工人数超过3,500人。公司足迹遍布全球,在德国、巴西、中国、法国、印度、意大利、斯洛伐克和美国均设有生产基地,可以为全球客户及合作伙伴提供优质服务。赛米控丹佛斯已在功率模块封装、技术创新、客户产品领域深耕90余载。未来,公司将充分利用这些技术积累和专业知识,致力于成为电力电子领域的终极合作伙伴。


("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
罗姆漫画第二弹 | 成为超级工程师的第一步!
罗姆漫画第一弹 | 电机驱动器课堂开课!
  罗姆"R课堂"应各位工程师的要求,开启了全新漫画系列“Sugiken老师的电机驱动器课堂”!目的是让参与电机设备开发和设计的工程师,特别是面向三相无刷电机驱动电路亦或是初学者们告别从前枯燥无趣的文字,在轻松的漫画氛围中同样可以掌握电机驱动器知识。  现在让我们跟着主人公一濑学,一起进入Sugiken老师的电机驱动课堂吧!  详细解读  前言  电机已经被广泛应用于家用电器、计算机相关设备、工业设备和汽车等众多领域。  全球每年的电机产量约为100亿台,而且对电机需求还在不断上升。  另一方面,据统计,电机的耗电量约占全球总耗电量的50%,从应对全球能源问题的角度看,不仅电机本身要更省电,而且高效的电机驱动和控制方法也非常重要。  因此,参与需要使用电机的设备开发和设计的工程师数量也在不断增加,其中也有不少人是第一次从事电机设备相关的工作。  考虑到这些情况,本课程的内容设置属于入门级,适合从事电机设备开发和设计的工程师,再具体一点讲,很适合三相无刷电机驱动电路的开发和设计工程师,也很适合初学者。  首先,我们先来了解以下两个主题,这会帮助我们了解什么是电机驱动器。电机驱动器IC的作用电机驱动器IC与电机设备之间的关系  电机驱动器的作用  用来使电机旋转(驱动电机)的集成电路(IC)通常被称为“电机驱动器IC”或“电机驱动IC”,在某些情况下还会被称为“电机驱动器”。市场上的电机驱动器IC种类非常多。  那么,为什么需要用电机驱动器IC来让电机转动呢?  下面我来简单解释一下这其中的原因。首先,电机之所以能够转动,是由于构成电机的电磁体和永磁体会产生吸引力和排斥力。为了使电机持续转动,就必须切换电机多个电磁体各自的极性,并调整磁力的大小。而电机驱动器IC正是被用来控制电磁体的,也就是说,由它对电机中的绕组(线圈)所流电流的顺序和电流的大小进行控制。  当然,世界上也有不使用电机驱动器IC的情况。比如,有一种电机可以通过机械开关来控制电流,从而实现电机旋转。不过,如果使用电机驱动器IC,就可以进行更复杂的控制和电流量调整了。另外,使用微控制器也可以实现与电机驱动器IC相同的功能。只要创建一个程序能够控制线圈通电开关即可。但是这也涉及到成本是否合适、程序开发的时间与精力等方面的考量。综合来看,电机驱动器IC的价格相对便宜,并且在驱动电机方面可以达到与微控制器同等甚至更好的效果,因此得以广泛应用。  电机驱动器IC与外围电子元器件一起被安装在电路板上。电路板可能内置在电机中不可见,也可能安装在电机的侧面,还有可能与电机分开被一并配置在配套设备的电路板上。然后,电机被安装在空调、电脑或汽车等配套设备中,用来使风扇、滚筒、磁盘和轮胎等旋转。  *各种应用场景示例  近年来,配备这种电机的设备需要更节能、更安静,因此在设计电机时必须满足这些要求。另外,电机的性能还会受到流过线圈的电流变化(电流控制程度)的影响。因此,控制这些因素的电机驱动器IC是让电机高效率、低振动(节能、静音)旋转的重要器件。  关键要点  需要用电机驱动器IC来控制流过电机绕组(线圈)的电流顺序和电流大小。  尽管也有不使用电机驱动器IC的驱动方法,但由于电机驱动器IC的价格相对便宜,并且在驱动电机方面可以达到与微控制器同等甚至更好的效果,因而得以广泛应用。  接下来,我将为您介绍电机驱动器与电机设备之间的关系。  电机驱动器与电机设备之间的关系  在接下来的讲解中,将会出现电机设备的组成和各部分相关的一些术语,比如电机驱动器IC、由电机驱动器IC和外围元器件组成的电机驱动器(电机电路)、当电机驱动器与电机机身组合并通电时便会执行预期工作的“电机”、安装了该“电机”的设备等。请大家结合图片来了解它们的含义和定位。  当然,仅凭电机驱动器IC一种器件是做不了什么的。只有将它与电机的绕组(线圈)连接起来,并从电源获得电力之后才能构成使电机旋转的驱动电路。这部分的目标是通过电机驱动器将电能有效转换为机械能(旋转动力),激发出电机机身的能力。另一方面还需要认识到,很难激发出超过电机机身固有特性的性能。  由电机驱动器和电机机身组成的“电机”,需要具备高效率、低振动、低噪声等特性。将电机安装在配套设备上之后,这些特性会体现在设备的节能性能和静音性能上。因此,电机驱动器的电机驱动性能将会影响设备的性能(节能、静音)。另外,电机驱动器还需要同时考虑电气可靠性和运动体(电机)的机械可靠性。  在控制方面,有一种说法是“如果不充分了解控制对象就控制不了控制对象”。也就是说,要想设计出好的电机驱动器,需要先了解电机的结构、旋转原理、在配套设备(应用产品)中的使用方式、以及应用需求。后续我将会依次为大家介绍电机的工作原理、电机的控制方式以及电路配置等基础知识。  关键要点  了解电机驱动器IC、由电机驱动器IC和外围元器件组成的电机驱动器(电机电路)、由电机驱动器与电机机身组合而成的“电机”、安装了该“电机”的设备等相关术语的定位与关系。  在控制方面,有一种说法是“如果不充分了解控制对象就控制不了控制对象”。  也就是说,要想设计出好的电机驱动器,需要先了解电机的结构、旋转原理、在配套设备中的使用方式、以及应用需求。  本文作者Sugiken老师简介  应用在ROHM的电机LSI事业部任技术主干(专家)之职,负责为电机驱动器IC开发提供各种技术方面的建议与指导,也负责开发旨在改善电机特性的新驱动算法,并担任公司内部和外部电机相关培训课程的讲师,还会举办一些电机技术讲座等活动。
2025-12-09 16:02 reading:298
工程师召集!利用罗姆碳化硅模块的优势来助力汽车应用的未来发展
  近年来随着电动汽车市场的不断扩大,对高性能、高效率的功率半导体器件的需求也在持续增长。碳化硅芯片以其出色的耐高温、耐高压、低损耗等特性,成为电动汽车电机控制器、电池管理系统等关键部位的首选材料。  罗姆碳化硅业务布局,其贯彻垂直整合生产体系,通过第4代碳化硅晶圆及多类碳化硅模块,如 TRCDRIVE pack™(小型化、低寄生电感、散热好,适配主驱逆变器)、BSTB模块、HSDIP模块与2in1表面贴装模块(适用于OBC等)的性能优势与未来规划,为汽车电动化提供高效解决方案。  本次研讨会将向大家讲解罗姆碳化硅模块方面的知识内容。扫描海报二维码即可报名,参与还有机会赢取精美礼品!  01 研讨会提纲  1. ROHM碳化硅业务概述  2. 主流碳化硅模块产品介绍  3. TRCDRIVE pack™模块  4. BSTB模块  5. HSDIP20/2in1 SMD碳化硅模块  02 研讨会主题  利用罗姆碳化硅模块的优势  来助力汽车应用的未来发展  03 研讨会时间  2025年12月17日上午10点  04 研讨会讲师张子阳(高级工程师)  罗姆半导体公司的功率器件工程师,主要推广碳化硅等功率器件的推广和应用,深度了解碳化硅器件工艺及相关市场。  相关产品页面  · 二合一 碳化硅封装模块“TRCDRIVE pack™”  · 碳化硅塑封型模块“HSDIP20”  · 罗姆碳化硅功率器件系列产品  · 第4代碳化硅MOSFET  好礼●来袭  互动礼  观看研讨会并参与提问即有机会获取小米鼠标1个,共计15份。  宣传礼  转发研讨会文章/海报,同时将截图私信至罗姆微信公众号即有机会获取精美礼品1份。  专业微信群  标签打印机(30份)  微信朋友圈  车载手机支架(20份)  邀约礼  分享本次研讨会,邀请5位好友报名,并将好友报名手机号分享至罗姆公众号后台,即有机会获取30元京东卡1份,共计20份。  注意事项  1. 请注意,想获得以上好礼都需要报名研讨会并关注“罗姆半导体集团”微信公众号(微信号:rohmsemi)。  2. 每位用户仅可领取一种奖品,报名信息须真实有效。  3. 活动最终解释权归罗姆半导体集团所有。
2025-12-04 15:48 reading:318
罗姆课堂 | 诺顿定理:等效电路分析
  诺顿定理:等效电路分析  诺顿定理是一种通过将复杂二端网络等效替换为电流源与并联电阻的组合来简化电路分析的方法。借助这种方法,即便在电路中包含电压源或受控电源的情况下,也能准确计算负载上的电流与电压,进而减少复杂电路设计的工作量。例如,诺顿定理的特点在于:在电路设计与学习场景中,不仅常用于对放大器输出特性的评估,还易于应用于滤波器及放大电路的优化工作。  本文由罗姆和AMEYA360将从诺顿定理的基本原理、具体求解方法,到与其他分析方法的区别,进行通俗易懂的介绍。同时,也将对诺顿定理的使用要点进行整理归纳。  点击查看诺顿定理:等效电路分析全部内容  诺顿定理的基本原理  诺顿定理指出:“从两个端子看进去的任意复杂线性电路,均可等效替换为一个电流源(IN)与一个电阻(RN)相并联的电路。”此外,诺顿定理的证明与戴维南定理呈表里一体的关系,二者可相互转换,这是其显著特征。  所谓“线性电路”,是指电压与电流的关系保持线性的电路,通常指包含电阻、线性独立电源、受控电源等元器件的电路。即使电路中包含二极管、晶体管等非线性元件,在特定工作点附近,有时也可通过采用线性化等效电路来应用,但本文将主要聚焦于线性元器件展开论述。  构成诺顿等效电路的要素  要有效运用诺顿定理,必须准确理解构成其等效电路的要素。诺顿等效电路仅由两个元器件构成,即电流源与并联电阻(RN)。掌握这一结构后,即便面对看似复杂的电路,也能快速把握其核心本质。下文将对诺顿定理中的核心要素——诺顿电流与诺顿电阻,以及它们之间的相互作用进行说明。  诺顿电流  应用诺顿定理时,最终可得到一个名为IN的理想电流源。根据定义,IN是将两个目标端子短接(直接连接)时流过的电流。  具体而言,需将负载电阻替换为理想导体,再通过计算或测量得出流入该导体的电流大小。  理想电流源的特性是无论端子电压如何变化,都会持续提供恒定的电流IN。实际电路元器件并不具备无限大的内阻,但通过这种理想化处理,不仅能简化电路计算过程,还能更清晰地把握电流源与负载之间的相互作用关系。
2025-12-03 14:23 reading:328
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
model brand To snap up
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code