纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

Release time:2024-08-01
author:AMEYA360
source:纳芯微电子
reading:924

  随着现代汽车电子技术的快速发展,步进电机作为一种精确且可靠的执行元件,在汽车电子系统中的应用日益广泛。为了实现车载步进电机应用的精确控制,纳芯微推出了集成LIN和MOSFET功率级的单芯片车用小电机驱动SoC——NSUC1610,可以帮助客户实现安全可靠的车载电机控制。

  本文将结合步进电机的结构与驱动方法,重点介绍基于NSUC1610的步进电机控制原理及其实际应用

  步进电机结构及其驱动方法

  与人们熟知的大部分电机一样,步进电机的结构也是由定子和转子组成。转子由轴承、铁芯、磁钢等构成。转子铁芯带有齿轮,是步进电机单部步距的行程;定子是由铁芯、定子绕组和支撑结构构成。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机结构

  根据绕组方式,步进电机主要分为两大类:一类是单极性步进电机,它是由带中心抽头(公共线)的单绕组组成,其电流均由1、2、3、4四根线的相线流入中心抽头公共线,因此电流方向是单向的。另一类是双极性步进电机,由没有中心抽头的绕组构成,其电流方向是双向的。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机的分类

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  单极性步进全步运转示意图

  单极性步进电机和双极性步进电机的驱动方式不尽相同,上图中单极性步进电机的A、B、C、D分别是两相四线,5为抽头的公共线。在驱动电机全步运行时,步骤如下:

  第一步:

  A相通电,B、C、D相不通电,A相产生磁场,且磁极是S极,吸引转子的N极;

  第二步:

  A、B相全部通电且电流相同,产生相同的磁极,两个S极磁场矢量合成,吸引转子向A、B相之间旋转;

  第三步:

  B相通电,A相断电,B相产生磁场,且磁极是S极,吸引转子的N极;

  第四步:

  B、C相通电且电流相等产生相同的磁性,两个S极磁场矢量合成,即可吸引转子向BC相之间旋转。

  依次类推五六七八步,使整个步进电机旋转起来。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  双极性步进全步运转示意图

  双极性步进电机的驱动是直接驱动A+、A-、B+、B-两相四根线来实现运转的。步骤如下:

  第一步:

  A相通电,B相不通电,A相产生磁场且A+磁极是S极,A-磁极是N极,吸引转子的N极至A+,S极至A-;

  第二步:

  A、B相全部通电且电流相同,产生相同的磁极,两个S极的N极磁场矢量合成,吸引转子N极向A+、B+相之间旋转;

  第三步:

  B相通电,A相断电,B相产生磁场且磁极是S极,吸引转子的N极至B+;

  第四步:

  B相通电,A相断电且电流相等,产生相同磁性,两个S极磁场矢量合成,吸引转子N极,向B+、A-相之间旋转。

  依此类推五六七八步,整个步进电机便旋转起来。

  基于NSUC1610的步进电机控制

  纳芯微NSUC1610采用数字恒流控制技术,由PWM 100%控制每个周期的电流输出,实现对输出电流的精确调节。这意味着,在输出电流未达到设定电流值之前,PWM输出on,一旦达到设定电流值便输出off;如果在输出off之后的输出电流低于设定值,就会在下一个周期重新输出高电平,继续增加输出电流,以便在PWM输出off时使电流及时衰减至设定值。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  硬件电流控制

  NSUC1610的电流控制采用三种衰减方式,以适应不同类型和需求的步进电机。第一种是慢衰减(slow decay)方式,打开电流输出时,上桥臂输出PWM波,下桥臂输出常高;关闭电流时,关闭上桥臂,下桥臂保持常高,通过MOSFET的体二极管实现泄放。这种方式是将电流的电能转化为热能,但泄放能力有限。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  异步慢衰减

  第二种是快衰减(fast decay)方式,打开电流输出时,上下桥臂均输出PWM波;关闭电流输出时,通过打开反向的上下桥臂,直接将能量泄放至电源充电,此时泄放能力较大。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  同步快速衰减

  第三种是混合衰减(mix decay)方式,它结合了前两种方式,一段时间采用慢衰减方式,一段时间采用快衰减方式,并调控两者的时间比例。

  至于具体采用哪一种衰减方式来衰减电流,需要根据电机的电感参数及电机的转速等合理选择。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  混合衰减

  在采用NSUC1610驱动双极性步进电机时,只需将电机的A+、A-、B+、B-四根线直接与MOUT0、MOUT1、MOUT2、MOUT3相连,VSS、ISNS管脚直接接地,外围电路只需加一些必要的电容、电阻及二极管等被动元件,即可实现用单芯片控制双极性步进电机,同时还可以实现与LIN主机的通信,大大地提高系统的集成度和可靠性。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  基于NSUC1610的步进电机图

  从步进电机的驱动原理来看,通过给电机的两相通上交流电流即可使电机旋转。实际上,这是比较粗糙的步进电机控制方式,这种控制方式产生的电流突变点较多,转距不恒定,旋转也就不太平顺。

  为了让电机较为平顺丝滑地旋转,通常采用微步驱动方式。微步驱动方式不同于全步驱动方式,它是在8步全步中去掉了4步,插入了中间点临界电流,即0电流。通过不断类推,不断插入中间电流,即可减小电流突变,细化电机的电流变化,使之接近正弦,从而实现微步。微步的目标是产生A、B相位差90°的正弦电流。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  微步原理

  NSUC1610利用数字恒流控制实现了微步正弦电流控制,具体实现原理是采用比较器恒流控制。方法是在正端接入一个桥臂电流采样信号,负端接入一个DAC输出电压信号,在每一个微步控制期间触发固定的DAC输出。

  如果桥臂电流信号大于DAC,则打开相应的桥臂输出;如果桥臂电流小于DAC值,则关闭相应的桥臂输出,这样即可实现每一个微步期间的闭环恒流控制。在整个步进区间中,根据正弦公式改变DAC输出,即可实现电流信号的正弦输出,从而实现步进电机的微步控制。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机微步电流控制

  在电机旋转过程中,会出现一定概率的堵转而导致电机失步。为了检测电机是否出现堵转失步,可以通过测量电机的反电动势来判定。由于电机的反电动势与其转速成正比,因此需要为测量到的反电动势设定一个合理的阈值,小于设定阈值即可认为电机出现了失步。

  在整个电流控制区间,电机的反电动势大部分是不可测量的。只有当电流为0,桥臂没有导通驱动电机时,测量的两个桥臂电压才是真实反电动势。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机失速检测

  电机的启动和停止时速度为0,如果直接满速启动或停止,那么电机的启停就会很突然,出现不平顺。为了实现较为平缓的速度控制,可以采用梯形加减速的方式实现位置控制。由于速度控制的曲线是梯形,位移曲线就是S型。从图中可以看到,电流波形在加速减速阶段较为稀疏,而在匀速阶段较为密集。一般步进电机停止前,会有一段大的稳定电流,旨在防止电机转到目标位置时出现过冲;接着进入hold状态,利用一个小的hold电流可使扭矩保持不变。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机位置控制

  更高效智能的车载步进电机控制

  通过采用数字恒流控制技术,NSUC1610实现了对步进电机电流的精确调节,以适应不同类型和需求的步进电机。NSUC1610还支持微步驱动方式,使步进电机的旋转更加平顺丝滑。


("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
纳芯微重磅推出车规级SBC NSR926X,助力智能汽车电子架构升级!
  汽车电子电气架构正加速从分布式向域控制中央集中式方向发展,系统设计面临以下关键挑战:  • 系统集成度:功能数量持续增加,需通过高集成方案降低外围器件数量,优化PCB空间布局;  • 功耗管理:低功耗待机、快速唤醒与多模式能耗控制需求提升,设计平衡难度加大;  • 总线系统设计:CAN FD、LIN等多总线架构广泛应用,需兼顾高速传输、低干扰性能与网络唤醒机制,保障通信可靠性与整车功耗水平。  纳芯微全新推出的NSR926X系列车规级SBC系统基础芯片,集成了三路低压差稳压器(LDO)、四路高边驱动(HSS)、LIN收发器及带部分网络(Partial Networking, PN)功能的高速CAN收发器,采用多合一平台级设计,全面满足智能汽车控制模块对供电、通信与驱动等功能的集成化需求,助力下一代汽车电子架构高效升级!  封装与选型  NSR926X采用7mm × 7mm QFN48封装,带Wettable Flank结构,支持AOI检测,符合AEC-Q100 Grade 1车规认证,可广泛应用于车身控制模块(BCM)、尾门控制单元、转向系统模块、挡位选择模块等车载电子系统。  NSR926X系列产品选型表  产品亮点  集成三路LDO输出,满足多电压域供电需求  ◆ LDO1:主稳压输出,提供5V/250mA (NSR926X) 或3.3V/250mA(NSR926XV33),适用于MCU供电;  ◆ LDO2:辅助稳压输出,5V/100mA,具备板外使用保护功能;  ◆ LDO3:可配置电压输出,支持5V或3.3V(NSR926X)、3.3V或1.8V(NSR926XV33) 选择,配合外部PNP晶体管可用于板外供电或与LDO1负载共享。  集成四路高边驱动,满足多样化负载控制需求  ◆ HS1、HS2:3Ω导通阻抗,适配中等功率负载;  ◆ HS3、HS4:6Ω导通阻抗,适用于轻载控制;  四路HS针对带大电容启动的应用场景进行了设计优化,兼顾启动性能与短路保护需求。  支持CAN FD与LIN通信,适配复杂车载网络架构  ◆ CAN收发器:支持最高5 Mbit/s FD通信,兼容CAN 部分网络(Partial Networking, PN)功能与CAN FD容错模式,符合ISO 11898-2:2016与SAE J2284标准;  ◆ LIN收发器:支持LIN 2.2协议,兼容ISO 17987-4与SAE J2602标准;  集成7种状态机模式,适配各种应用场景  ◆ 初始化模式 - Init Mode;  ◆ 正常工作模式 - Normal Mode;  ◆ 低功耗模式 - Stop/Sleep Mode;  ◆ 故障保护模式 - Restart/Fail-safe Mode;  ◆ 用户调试模式 - Test Mode  集成完善的智能唤醒与系统监控/故障诊断功能  ◆ WK端口支持电压检测及远程唤醒功能,具备高压测量功能,通过WK1与WK2可实现高压检测与备用测量模式切换;  ◆ 16位SPI接口,支持灵活配置与系统状态监控;  ◆ 故障输出/通用IO:3路Fail输出,支持故障状态显示,FO2/FO3可配置为通用IO或唤醒源;  ◆ 集成Fail-safe安全机制、看门狗定时器(窗口模式与超时模式)、中断与复位输出功能  依托高集成、高可靠、低功耗、可扩展等优势,纳芯微NSR926X系列SBC为下一代智能汽车电子系统提供稳定、灵活、可靠的一站式电源与通信支持平台!
2025-07-28 14:06 reading:298
纳芯微参与车规传感器标准制定,推动汽车电子行业发展
  在汽车电子技术加速发展的背景下,产业标准体系建设已成为行业高质量发展的关键之一。作为国内领先的汽车模拟芯片和传感器芯片企业,纳芯微不仅在产品创新和市场拓展方面不断发力,还积极参与行业标准的制定,推动技术规范化进程。  近期,由纳芯微参与编制的《汽车用霍尔式传感器性能试验方法》团体标准,已正式获得中国检验检测学会批准发布。该标准对霍尔式传感器的一般试验、外观检查、工作温度范围、电气特性等性能测试方法进行了系统规定,为相关产品的开发、验证和质量评估提供了统一的技术依据。  纳芯微在技术创新、市场拓展及产业链协同持续突破。其产品广泛应用于新能源汽车三电系统,并加速渗透至智能化和安全领域。自2016年发布首款汽车芯片,截止2024年,纳芯微汽车芯片累计出货量已达6.68亿颗,2024年汽车业务营收占比36.88%。  在磁传感器领域,纳芯微不断丰富产品体系并布局全面,2024年顺利完成对麦歌恩的战略收购与整合,进一步拓展技术与产品矩阵,提升市场竞争力,巩固行业领先地位。  磁电流传感器(例如:NSM201x系列和NSM203x系列)可用于汽车电池管理系统的电流监测;  磁开关传感器(例如:MT72xx系列和MT73xx系列)可用于车门、尾门、座椅卡扣等部件的测与控制;  磁角度传感器(例如:MT6511)可实现精准的角度位置感知,提升电控系统的稳定性;  磁阻编码器(例如:MT6835 和 MT6826S)以高精度和快速响应为优势,广泛应用于工业自动化和运动控制等领域;  速度传感器(例如:NSM41xx系列)采用AMR技术,可用于汽车ABS系统中的车轮速度检测,助力制动控制系统实现精准响应与安全提升。
2025-07-23 10:43 reading:371
纳芯微化繁为简, 适配复杂磁场环境,MT73xx 3D双路输出霍尔锁存器赋能车规电机精准控制
  纳芯微基于3D霍尔原理设计的双路输出霍尔锁存器MT73xx系列,支持SS(速度与速度)或SD(速度与方向)双路输出,符合车规Grade 0标准,可广泛应用于车窗、尾门、天窗等电机控制系统,助力提升速度与位置检测的精度与稳定性,优化整车舒适性体验。  在电机控制系统中,速度与方向信号的精准检测直接影响系统响应速度与运行稳定性。传统方案通常依赖两颗霍尔锁存器组合,对磁环安装精度要求较高,容易引发信号相位偏差、同步性差、结构复杂等问题。  MT73xx系列产品集成3D霍尔感应结构,具备天然正交输出特性,能够同时输出双路相位差90°的速度信号(SS输出)或速度与方向信号(SD输出),广泛适用于 “速度-方向”检测场景。这种设计降低了对磁环磁极位置安装精度的依赖,有效规避双路信号相位偏差,简化系统结构,提高整机稳定性,为运动控制检测提供更灵活可靠的解决方案。  VHS技术加持,适配多元磁环结构  为了实现高精度的3D感应效果,MT73xx系列采用纳芯微自研VHS(Vertical Hall Sensor)技术,通过XY、YZ、XZ不同轴向感应组合,任意两轴便可天然正交输出,提升信号同步性。  此外,MT73xx系列可很好的兼容磁环结构,无论是轴向、径向或异形磁铁结构,均能保持优良的占空比表现,便于用户根据磁环特性与安装环境灵活调整设计,进一步降低开发难度与调试成本。  双路输出优化系统集成  在系统集成方面,MT73xx的双路输出特性可替代传统单路或双霍尔方案,直接输出SS(速度与速度)或SD(速度与方向)信号至ECU,减少外围冗余位置传感器需求。  这一设计不仅节省PCB空间、简化结构设计,还提升了方案集成度,为客户在电机控制、智能座舱等领域的创新应用提供更大自由度。
2025-07-23 10:41 reading:340
助力半桥器件开关安全提速,纳芯微推出车规级带米勒钳位功能的隔离半桥驱动NSI6602MxEx系列
  纳芯微正式推出车规级隔离半桥驱动芯片NSI6602MxEx系列,该系列在纳芯微明星产品NSI6602基础上,集成了米勒钳位功能,同时兼具高隔离电压、低延时、死区可配、欠压阈值可选等特点,适用于驱动SiC、IGBT等器件,可广泛应用于新能源汽车OBC、DC/DC、主动悬架等场景。NSI6602MxEx与NSI6602功能框图对比  5A米勒钳位功能,助力半桥电路安全可靠  在实际应用中,OBC/DCDC、工业电源、电机驱动等桥式电路的功率器件容易发生串扰行为,尤其伴随着第三代功率器件如SiC和GaN的应用,门极阈值电压以及最大耐受负压双双减小,使得抑制寄生导通的电压裕量在不断减小。在使用传统半桥驱动芯片时,为了避免因米勒效应引发的桥臂直通,通常需要调整驱动电路。  然而,在很多情况下,即使精心调整了驱动参数、正负供电电压,以及优化PCB栅极寄生参数,也难以同时将正负串扰控制在安全余量以内。这不仅限制了碳化硅等器件性能的发挥,也可能带来潜在的安全隐患。开关过程中米勒效应原理  纳芯微推出NSI6602MxEx系列,为两路半桥驱动电路集成5A能力的米勒钳位功能,能够为米勒电流提供最小阻抗释放路径,有效抑制串扰电压的抬升。NSI6602MxEx在NSI6602基础上全副武装,为SiC等器件的安全应用保驾护航。  NSI6602MxEx米勒钳位方案应用分享  在使用SiC功率器件时,由于其高dv/dt特性,门极常常遭遇正负串扰电压(Vswing)幅度超出门极开启阈值(Vgsth)及负向耐压极限(Vgs_min)的情况。这种串扰容易导致误导通或器件损伤,是高性能驱动设计的一大挑战。常规驱动方案  如上图常规解决 SiC 器件门极串扰方案所示,这些传统手段虽然“理论可行”,但在高频高压的SiC应用中仍难以同时达到低损耗与安全余量的双重目标。  下图展示了某款SiC器件分别搭配NSI6602MxEx和传统无米勒钳位驱动芯片的对比测试结果。在相同驱动参数与layout条件下,NSI6602MxEx能显著抑制正负Vswing,搭配适当负压关断后,可将门极串扰压制至安全范围以内。不同器件的串扰摆幅Vswing对比波形不同方案效果对比  更进一步,对于部分 Ciss/Crss 优化良好的器件,NSI6602MxEx 甚至无需负压,也能实现串扰可控,极大降低系统设计复杂度。  ±10A输出电流,助力外围电路精简设计  NSI6602MxEx提供超强驱动能力,最大可输出10A的拉灌电流,支持轨到轨输出。无论是直接驱动更大栅极电荷(Qg)的功率管,还是在多管并联的应用中,与传统方案相比,NSI6602MxEx无需额外添加缓冲器,即可实现高效驱动,有效简化外围电路设计。此外,32V最大工作电压,极限35V的最大耐压,可以应对更高的EOS冲击,搭配精简的驱动外围设计,大幅提高了整个电路系统的可靠性。  可编程死区及多档欠压阈值,助力设计灵活配置  NSI6602MxEx支持通过DT引脚进行死区配置,通过调整下拉电阻可以灵活配置不同死区时间,此外还可以将DT引脚直接接到原边VCC用来两路驱动并行输出;搭配DIS/EN两种可选的使能逻辑,为终端应用提供丰富的控制逻辑;另外,副边电源欠压UVLO设有8V,12V,17V三种选择,适配于IGBT和SiC应用中多种电源设计场景的欠压保护。  NSI6602MxEx产品特性:  5700VRMS隔离耐压,可驱动高压SiC和IGBT  高CMTI:150 kV/μs  输入侧电源电压:3V ~ 18V  驱动侧电源电压:高达 32V  轨到轨输出  峰值拉灌电流:±10A  峰值米勒钳位电流:5A  驱动电源欠压:8V/12V/17V三档可选  可编程死区时间  可选的正反逻辑使能配置  典型传播延时:80ns  工作环境温度:-40℃ ~ 125℃  符合面向汽车应用的 AEC-Q100 标准  符合 RoHS 标准的封装类型:SOW18,爬电距离 >8mm  产品选型与封装  NSI6602MxEx系列提供六种型号可选,具备丰富的使能逻辑配置和驱动电源欠压值规格,灵活适配多种应用场景。
2025-07-11 09:57 reading:412
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
model brand To snap up
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code