SiC MOSFET 并联的关键技术

发布时间:2025-06-25 11:21
作者:AMEYA360
来源:SiC MOSFET
阅读量:151

  基于多个高功率应用案例,我们可以观察到功率模块与分立MOSFET并存的明显趋势,两者在10kW至50kW功率范围内存在显著重叠。虽然模块更适合这个区间,但分立MOSFET却能带来独特优势:设计自由度更高和更丰富的产品组合。当单个 MOSFET 无法满足功率需求时,再并联一颗MOSFET即可解决问题。

  然而,功率并非是选用并联MOSFET的唯一原因。正如本文所提到的,并联还可以降低开关能耗,改善导热性能。考虑到热效应对导通损耗的影响,并联功率开关管是降低损耗、改善散热性能和提高输出功率的有效办法。然而,并非所有器件都适合并联, 因为参数差异会影响均流特性。本文将深入探讨该问题,并展示ST第三代SiC MOSFET如何完美适配并联应用。

  分立MOSFET和功率模块

  分立器件采用单管封装形式(每个封装仅含单个MOSFET或二极管),可灵活选择通孔插装(THT)或表面贴装(SMD)封装。这种形式对拓扑设计和混合封装应用没有任何限制。

  功率模块则截然不同:其内部器件按特定拓扑(如全桥)集成,一旦封装完成,既无法修改拓扑也不能调整器件参数。因此在原型设计阶段,工程师需要投入更多精力进行仿真验证,而使用分立器件时能直接进行实物测试。

  功率模块有两大优点:

  功率耗散:功率模块的横截面结构通常包括散热基板、陶瓷电气绝缘层以及铜平面走线,硅或碳化硅芯片(如MOSFET)通过烧结工艺直接连接在铜走线上。这种设计在散热方面具有显著优势:散热基板可直接与散热器接触,无需额外电气绝缘,两者之间仅需导热界面材料(TIM,如导热硅脂)即可实现高效热传导。

  模块的另一大优势在于缩短换流回路,这一点虽比散热设计更复杂,但效果极为关键,能有效降低寄生参数。走线本身具有电阻和电感,长度越长,寄生效应越严重:电阻会因流经的RMS电流产生不可忽视的导通损耗;电感则会在电流变化时引发电压过冲,开关速度越快,电压尖峰越高,甚至可能损坏器件。

  在以下方面,分立器件难以与模块相比:

  散热设计:分立器件的散热基板通常不绝缘且与MOSFET漏极相连,因此导热界面材料需同时满足绝缘和导热需求。

  走线长度:分立器件芯片间的走线长度较长。电流通过键合线流至封装引线,然后流至PCB,再返回。

  在模块中,器件并联非常简单:两颗芯片并列安装,其余节点通过短键合线连接。走线更短且热耦合性能更优。

  分立器件之间的热耦合性能不如模块好。热量从芯片到封装,再通过导热界面材料 (TIM) 到达散热器,再到其他 MOSFET。每种介质以及它们之间的每次转换都会产生热阻,导致温度梯度。

  并联分立MOSFET的动机

  尽管存在上述局限,分立MOSFET并联仍具备不可替代的优势:设计灵活性、参数可扩展性、供应链冗余以及原型验证便捷性。此外,并联本身还能带来以下物理层面的优化:

  热阻与封装散热面积成反比。若将损耗均分至两个相同器件,总散热面积翻倍,单个封装的热耗减半,从而使结到散热器的热阻降低一半,器件实际温度更接近散热器温度。

  MOSFET损耗主要包含导通损耗和开关损耗。 导通损耗由沟道导通电阻(RDSon)引起,并联N个相同MOSFET可使总RDSon降至1/N。

SiC MOSFET 并联的关键技术

  开关损耗源于开关过程中电压与电流的重叠(图1)。尽管瞬态时间极短,但高压大电流下峰值功率非常显著。通过对功率随时间进行积分(曲线下方的区域)可得到特定条件下的开通能量和关断能量,将二者乘以开关频率(若条件变化则累加1秒内的所有能量),即可计算出开关损耗。

  给定条件是值得注意的地方,因为开关能量很大程度上取决于几种参数:瞬态时间、电压、电流和温度。关于并联方案,在开关能量的电流函数中隐藏着一些优势。(图2)

SiC MOSFET 并联的关键技术

  开关能量的变化曲线不是线性的,略呈指数趋势。因此,电流加倍会导致能量增加超过两倍。并联时,结果正好相反:如果将电流均分到两个相同的器件,总开关能量会比单个器件单独开关时更低。

  如果我们将功率模块中的一个 MOSFET 与两个分立 MOSFET 进行比较,则该模块将处于劣势:

  对比功率模块中的单个MOSFET与分立形式的两个MOSFET,模块反而处于劣势:

  散热路径:由于模块结构不同,散热路径难以比较,但是,分立器件通过更大散热面积可弥补结构劣势,甚至超越模块性能。

  导通损耗和开关损耗:分立MOSFET并联的导通损耗是功率模块的二分之一,开关能量损耗显著降低,因此,并联分立 MOSFET 在损耗方面优势非常明显。

  这说明,在所述功率范围内,分立器件并联与模块方案存在性能重叠。使用更多的相同规格的器件可以提高功率,而并联时选择更高导通电阻而成本更低的器件,仍有可能在相同功率下与模块方案竞争。

  热失控——优势背后的隐患

  MOSFET的导通电阻(RDSon)并非静态参数,其数值随电流变化,且受温度影响更为显著。在当前功率范围内,碳化硅(SiC)MOSFET已成为主流选择,其RDSon温度特性远优于硅基MOSFET。

SiC MOSFET 并联的关键技术

  以ST最新一代HU3PAK封装(顶面散热)的SCT011HU75G3AG为例(图3),导通电阻RDSon非常低,是并联设计的理想选择。

  然而,从25°C至175°C其导通电阻Rdson仅上升约50%,与标准硅基MOSFET相比,这一增幅明显更低,传统硅基MOSFET在150°C(而非175℃,这是其绝对最高额定温度)时RDSon增幅可达200%。

  平坦的导通电阻(RDS(on))温度曲线是理想设计特性,能使导通损耗随温度变化保持稳定。然而,当损耗上升时,存在热失控风险:损耗增加导致温度升高,进而进一步加剧损耗。这种正反馈效应曾是硅基MOSFET的难题,但对碳化硅(SiC)器件通常可忽略——除非采用并联配置。

  为何存在这种差异?关键在于参数离散性,尤其是导通电阻RDS(on)。以型号SCT011HU75G3AG为例,其标称RDS(on)为11.4 mΩ,但实际可能高达15 mΩ。虽然同一批次中出现如此大偏差的概率较低,但我们仍以此极端情况分析:15 mΩ比11.4 mΩ高出32%,意味着在相同电压下该器件承载的电流将减少32%。因此,11.4 mΩ的MOSFET会产生约32%的额外损耗并更易发热。若RDS(on)随温度上升的斜率更大,虽然会导致更高损耗,但发热更严重的MOSFET会通过自我调节(升温导致电阻增加)使电流向低温器件转移。

  实际应用分析

  实际应用中的风险等级如何?由于并联MOSFET共享散热器(存在热耦合),这仍构成严重威胁。为验证此问题,我们通过仿真进行深入研究:假设两个HU3PAK封装的SCT011xx75 MOSFET(TO247封装表现会更好,此处选择更严苛案例),一个RDS(on)=11.4 mΩ,另一个=15 mΩ。散热器温度设定为90°C,采用导热界面材料(TIM)为填隙胶(导热系数7 W/(m·K),厚度0.4 mm)。

  在总RMS电流140A条件下,重点关注导通损耗。HU3PAK的冷却面积为120 mm²,计算得TIM导致的壳到散热器热阻为0.476 K/W。

  模拟实验结果

  140 A 电流中的 63 A 流经15 mΩ MOSFET,壳温为 123.7°C,结温为 139.9°C

  其余的77 A流经11.4 mΩ MOSFET,壳温为 131.8°C,结温为 151.8°C。

  当前电流失匹率为 22%,而初始值为 32%,并且两个 MOSFET 都有充足的温度裕度,即实际温度与最高绝对温度的差值很大。TIM导热胶的热梯度是一个关键因素,在15 mΩ MOSFET中,从外壳到散热器,温度降幅达到 33.7°C,而另一个 MOSFET则达到41.8°C。在这种情况下,TIM导热胶才是真正的限制因素,而MOSFET 之间的电流失衡不是问题。热导率选定为 7 W/(m∙K),这个值不错,但并非最佳。幸运的是,近期市场需求推动了对此类材料的研究,现在已出现超过 20 W/(m∙K) 的电隔离间隙填充材料。

  结论

  功率模块适合高功率应用场景,但分立MOSFET也具备诸多优势,使其同样适用于模块的功率范围。选择合适的MOSFET,需要考虑哪些关键因素?答案是优异的开关性能和出色的热管理性能。

  幸运的是,意法半导体的第三代 SiC MOSFET 应运而生,并联时仍能保持稳定开关性能,其导通电阻RDSon 的热变特性在降低能量损耗和有效抑制热失控实现了双重优化。


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
SiC MOSFET短路特性以及短路保护方法
  在光伏逆变器、车载充电器及牵引逆变器等应用领域中,由第三代半导体材料碳化硅(SiC)制成的SiC MOSFET正逐步替代由传统硅基(Si)制成的Si IGBT。这是因为碳化硅(SiC)材料相比传统硅(Si)材料具有更优越的物理特性,使得SiC MOSFET在高功率、高频率应用中表现更优,能显著提升设备效率并实现轻量化的系统设计。但SiC MOSFET和Si IGBT的器件特性存在差异——两者在短路故障时的短路耐受能力不同,这对保护电路的响应速度提出了更高要求。  本文从SiC MOSFET的器件特性出发,分析其与Si IGBT在故障响应上的本质差异的原因,并提出针对性保护策略。最后结合纳芯微自主研发的栅极驱动技术,详细阐述去饱和检测的设计方法。  1. SiC MOSFET短路特性介绍  在电力电子的许多应用中,短路故障是常见的工况,这就要求功率器件具备短时耐受能力,即可以在一定的时间内承受短路电流而不发生损坏。Si IGBT 通常的短路能力为5-10μs,而SiC MOSFET的短路耐受时间普遍较短(一般为2μs左右)。  Si IGBT与SiC MOSFET的短路能力的差异主要体现在以下两方面:  1)在相同阻断电压和电流额定值的情况下,SiC材料具有较高的临界击穿场强,基于这一特性,SiC MOSFET的芯片面积相较于Si IGBT更小,能实现更高的电流密度,但这也导致发热更为集中。  2)SiC MOSFET 与Si IGBT的输出特性存在差异。如图1.1所示,IGBT通常情况下在饱和区工作;当发生短路时,集电极电流IC迅速增加,从饱和区急剧转为线性区,且集电极电流不受VCE电压的影响,因此短路电流以及功耗增加会受到限制。而对于SiC MOSFET,如图1.2所示,它在正常工作期间处于欧姆区;当发生短路时,从欧姆区进入饱和区的拐点并不显著,且饱和区电流随VDE电压升高而增大,导致器件的电流以及功耗增加不受限制。因此SiC MOSFET的短路保护设计尤为重要。  IGBT输出特性曲线:  SiC MOSFET输出特性曲线:  2. SiC MOSFET短路保护方法  短路保护对于保证系统稳健运行以及充分发挥器件性能非常重要,合格的短路保护措施不仅能够快速响应并关断器件,还能有效避免误触发情况的发生。常见的短路保护方式分为电压检测和电流检测两种类型:电流检测通常借助分流电阻或者SenseFET的方式;电压检测采用退饱和保护,也就是DESAT保护。以下是对这三种短路保护方法的介绍,并阐明了各自的优缺点。  2.1.分流电阻检测  下图显示了一种常见的电流检测方案,在电源回路的MOSFET源极串联一个检测电阻ROC,当电流流过电阻ROC会产生一个电压VOC,如果检测得到的电压大于逻辑门电路的阈值电压VOCTH,则会产生一个短路信号OC Fault,与此同时驱动器关闭OUT输出。  分流电阻检测电流的方案简单明了、易于理解,具备出色的通用性,可以在任何系统中灵活应用。为了保证检测信号的精准度,需要选择高精度电阻以及快速响应的ADC电路;同时为了防止保护信号误触发,需要在比较器前加入适当的滤波电路。该方案可以采用电阻电容以及比较器的分立元器件搭建实现,也可以选择集成OC保护功能的驱动IC芯片。  针对PFC电路,可对电流检测电阻的位置进行调整,下图展示了一种负压阈值过流检测的方法。以Boost-PFC这类电路结构为例,在功率的返回路径中,电流检测电阻ROC检测得到的电压为负电压,当检测电压小于设置的阈值电压VOCTH时,保护信号将被触发,此时驱动器输出引脚会输出关断信号。  这种方案的缺点在于电阻带来额外的功率损耗,在大功率系统中,大电流流过检测电阻会产生较大的功率损耗;而在小功率系统中,则需要更大的电阻来保持检测信号的准确性,这同样也会影响系统效率。同时,如图2.1所示的方案,检测电阻带来的压降对功率器件的栅-源极电压造成影响,此外,图2.2所示的方案还存在拓扑的局限性。  2.2.带电流检测的功率器件  如下图,有一种带Sense功能的功率器件,其中,SenseFET集成在功率模块内,与主器件并联。通过使用高精度的分流电阻,可对SenseFET的电流进行监测,如此一来,检测到的电流与器件电流同步。  集成在功率模块内部的SenseFET,因寄生电感小,受到噪声的影响小。但是带SenseFET的电源模块存在明显劣势:一方面,其成本较高,会增加系统整体成本;另一方面,市场上这类器件的种类较少,可替代性较低。  2.3.退饱和检测  2.3.1.DESAT功能介绍  退饱和检测的本质是电压检测,当器件发生短路时,器件漏极和源极两端的电压会异常升高,因此可以通过比较器件正常导通时和短路时的漏源极电压作为短路判断的依据。  当器件开通且正常工作时,SiC器件两端的电压可能在1V左右,芯片内部集成的电流源IDESAT通过DESAT引脚,流经电阻RDESAT和高压二极管DDESAT至MOSFET的漏极,此时电容CBLANK两端的电压为SiC MOSFET漏源极压降、高压二极管DDESAT两端压降和电阻RDESAT两端压降之和。  当短路发生时,SiC MOSFET的漏源极电压迅速上升,高压二极管DDESAT反偏,内部电流源IDESAT通过DESAT引脚给外部电容CBLANK充电;当电容CBLANK两端电压超过内部比较器的阈值电压VT(DESAT),就会触发短路保护。
2025-04-07 14:51 阅读量:547
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码