How Cat.1 bis Technology Solves the
  The Internet of Things (IoT) is entering its second phase — a shift from "multi-point connectivity" to "intelligent scenarios."  Traditional smart home devices are moving beyond indoor environments into outdoor spaces that lack stable power and network access. Asset tracking is expanding from localized monitoring to global roaming, while AI-powered wearables are pushing the limits of battery technology as computing demands rise.  To address these challenges, the global Cat.1 bis standard is emerging as a key enabler. With its streamlined integrated design, ultra-low microamp-level power consumption, and global single-SKU compatibility, Cat.1 bis provides a breakthrough solution for mobility and endurance in next-generation smart devices.  New Battlefield for IPCs: From "Fixed Sentries" to "Mobile Detectives"  IPCs (Internet Protocol Cameras) are evolving rapidly from traditional indoor home security systems toward mobile, portable, and multi-scenario applications. Users now demand outdoor devices that can operate in "off-grid, weak-network" environments and portable cameras capable of capturing "brilliant moments" anytime, anywhere.  However, once IPCs go outdoors, unstable networks and limited battery capacity become major constraints. How can video transmission remain stable during movement? How can a camera stay on standby 24/7 without missing key footage or draining the battery? These challenges set extremely high standards for module size, mobility, and power management.  To cope with fluctuating networks in mobile scenarios, the new-generation Cat.1 bis technology introduces bandwidth adaptation, which dynamically adjusts bitrate based on real-time signal quality. This significantly improves bandwidth utilization and ensures smooth video streaming even in weak network conditions.  Meanwhile, to tackle battery anxiety, smart detection and flexible recording technologies are being deployed. A Cat.1 module can stay connected while only triggering recording upon detecting anomalies or critical events. This "microamp standby, millisecond wake-up" mechanism captures every key moment while extending standby time exponentially.  Asset Tracking: Building a Truly Global Network  As global supply chains expand, goods increasingly travel across continents. Traditional tracking solutions require different hardware models for each country’s frequency bands — resulting in SKU fragmentation, higher R&D costs, and complex inventory management. Furthermore, to ensure covert installation and long operating time, devices must continuously shrink in size and reduce power consumption to near-physical limits.  The global Cat.1 bis module solves this through multi-region compatibility, enabling a single device to achieve "one hardware, worldwide connectivity." Enterprises can maintain a single SKU that meets network certification requirements across major global operators. This not only reduces management complexity and cost but also enables seamless roaming for cross-border asset tracking.  With its compact, integrated hardware design, the next-generation module minimizes PCB footprint to meet the "ultra-compact" demands of locators. Combined with software-level power optimization, standby consumption is reduced to the microamp level — allowing even coin cell–sized devices to deliver long-term asset protection.  AI Companions and Wearables: The Art of Balancing Performance and Efficiency  Driven by large AI models, new categories such as AI companion dolls and senior health trackers are booming. These devices embody the “have it all” dilemma — balancing the demanding requirements of AI voice interaction for speed and mobility access, cost efficiency for mass adoption, and large batteries within compact designs to support intensive AI operations. This transformation demands multi-functional connectivity.  Cat.1 bis perfectly meets the speed requirements for both voice interaction and data transmission, avoiding the overkill and high costs of advanced LTE modules. For AI-driven devices that frequently wake from standby, Cat.1 bis optimizes power consumption and sleep mechanisms at the software level, achieving an efficient balance between connectivity and computational efficiency. Its compact hardware design also makes wearables lighter and more comfortable, enabling truly all-day intelligent companionship.  Conclusion: The Core Enabler of the Next IoT Evolution  From mobile IPCs to globally connected trackers and long-lasting AI wearables, every leap in IoT devices pushes the limits of connectivity technology. The new-generation global Cat.1 bis is rising to the challenge with three core capabilities — high compatibility, cost efficiency, and intelligent adaptability (including bandwidth self-adjustment, smart sleep, and single-SKU global support).  Cat.1 bis not only achieves unprecedented compactness and power efficiency in hardware but also establishes a unified connectivity foundation for Chinese smart manufacturing to expand globally.
Key word:
Release time:2026-01-30 15:25 reading:258 Continue reading>>
SIMCom丨SIM8260 series Achieves Global Certifications, Delivering High-Performance 5G Connectivity
  SIMCom, a global leader in IoT communication and solutions, proudly announces that its SIM8260 Series 5G modules have successfully obtained a wide range of international certifications, including CE, RCM, FCC, IC, JATE, TELEC, GCF, PTCRB, T-Mobile, Verizon, Deutsche Telekom, Orange, RoHS, REACH. These certifications demonstrate the SIM8230 series’ compliance with global standards and network requirements, ensuring smooth deployment across worldwide markets.  Built on the Qualcomm® Snapdragon™ X62 chipset platform, the SIM8260 series are a multi-band 5G Release 16 module supporting NR, LTE-FDD, LTE-TDD, and HSPA+ in both NSA and SA modes. With its advanced capabilities, the SIM8260 series enable fast, stable, and secure mobile broadband connections for a wide range of industrial and commercial applications.  The SIM8260 series achieve outstanding data rates across multiple network environments. On 5G Sub-6G SA, it supports download speeds of up to 2.4Gbps and upload speeds of up to 1Gbps, while in 5G Sub-6G NSA mode it can reach 3.4Gbps (DL) and 600Mbps (UL). For LTE networks, peak speeds of 1.6Gbps downlink and 200Mbps uplink are supported, and on HSPA+, the module achieves 42Mbps (DL) and 5.76Mbps (UL). These capabilities ensure stable, high-capacity communication to meet the demands of data-intensive IoT and enterprise applications.  Beyond performance, the SIM8260 series offer robust expansion capabilities with a wide range of interfaces including PCIe, USB 3.1, and GPIO, enabling flexible integration into customer solutions, reduce development costs, and accelerate time-to-market.  With its combination of high throughput, flexible integration, and proven security, the SIM8260 series are ideally suited for use cases such as smart manufacturing, connected vehicles, customer premises equipment (CPE), robotics, and other next-generation IoT solutions.  The achievement of comprehensive global certifications underscores the SIM8260 series’ in large-scale international deployment. These approvals not only confirm compliance with stringent regulatory, safety, and environmental standards, but also guarantee broad operator interoperability across regions. For customers, this means accelerated product launches, reduced deployment risks, and greater confidence in global scalability.
Key word:
Release time:2026-01-23 16:51 reading:405 Continue reading>>
GigaDevice Partners With Melchioni Electronics to Expand Business in France, Italy and the Iberian Peninsula
  GigaDevice, a leading semiconductor company specializing in Flash memory, 32-bit microcontrollers (MCUs), sensors, and analog products, has entered into a distribution agreement with Milan-based Melchioni Electronics.  The partnership extends GigaDevice's reach into several major European markets, with Melchioni Electronics supplying not only GigaDevice's leading Flash and MCU lines but also delivering dedicated field application engineering support. The deal covers distribution in France, Italy, Spain and Portugal, with on-the-ground presence in each of these countries.  GigaDevice delivers world-class SPI NOR Flash, SLC NAND Flash, 32-bit microcontrollers, analog, and sensor products. These technologies play a pivotal role across applications including industrial automation, automotive, consumer electronics, IoT, network communications, mobile, and PCs.  "The establishment of this partnership and the accelerated entry into the European markets are significant steps in our strategy," said Dr. Reiner Jumpertz, GigaDevice VP and General Manager in the EMEA region. "Melchioni has an exceptional reputation and is well-known for its deep engineering expertise. Their regional FAE and marketing teams perfectly support our successful growth plans in Europe.”  “This strategic agreement with GigaDevice delivers substantial value to our customer base,” stated Elisabetta Dell’Olio, Head of Technology & Suppliers Platform at Melchioni Electronics. “Our core mission is to empower enterprises with the most effective and cutting-edge technologies. By adding GigaDevice’s world-class Flash memory solutions and GD32 microcontrollers (MCUs) to our services, we are significantly elevating our offering across the automotive, industrial automation, and consumer electronics sectors.”  About Melchioni Electronics  Melchioni Electronics is a prominent company specializing in the distribution and integration of high-quality electronic solutions. With a strong reputation in the industry, Melchioni Electronics serves a diverse range of industrial sectors. The company is known for its expertise in providing electronic components and its ability to tailor customized solutions to meet the unique needs of its clients. Melchioni Electronics is committed to innovation and excellence, continually pushing the boundaries of technology to deliver cutting-edge electronic solutions to its customers. With a focus on quality, reliability, and customer satisfaction, Melchioni Electronics is a trusted partner for businesses seeking advanced electronic solutions and integration services.  About GigaDevice  GigaDevice Semiconductor Inc. is a global leading fabless supplier. Founded in April 2005, the company has continuously expanded its international footprint and established its global headquarters in Singapore in 2025. Today, GigaDevice operates branch offices across numerous countries and regions, providing localized support at customers' fingertips. Committed to building a complete ecosystem with major product lines – Flash memory, MCU, sensor and analog – as the core driving force, GigaDevice can provide a wide range of solutions and services in the fields of industrial, automotive, computing, consumer electronics, IoT, mobile, networking and communications. GigaDevice has received the ISO26262:2018 automotive functional safety ASIL D certification, IEC 61508 functional safety product certification, as well as ISO9001, ISO14001, ISO45001, and Duns certifications. In a constant quest to expand our technology offering to customers, GigaDevice has also formed strategic alliances with leading foundries, assembly, and test plants to streamline supply chain management.
Key word:
Release time:2026-01-20 15:00 reading:1247 Continue reading>>
A new choice for high-accuracy, highly compatible current sensing: NOVOSENSE launches the NSCSA21x-Q series high-precision current sense amplifiers
  NOVOSENSE has launched the NSCSA21x-Q series high-precision current sense amplifiers, offering a –2V to 28V common-mode input range, ultra-low ±5μV offset voltage, 130dB CMRR, and 200kHz bandwidth. Designed to meet the needs of new energy vehicles, server power supplies, telecom power systems, and energy storage, the NSCSA21x-Q series delivers exceptional accuracy and system stability in demanding environments.  Addressing Key Challenges in Modern Power and Automotive Systems  As automotive electrification and industrial intelligence advance, current sensing accuracy and system stability have become critical to overall performance. Traditional current sensors often face limitations in low-voltage detection, reverse connection protection, and dynamic response, impacting system reliability and efficiency. The NSCSA21x-Q series directly targets these pain points, overcoming three major challenges in precision current detection:  (1) High-Precision Motor Phase Current Sampling  Supports bidirectional current sensing in H-bridge structures. Combined with FOC algorithms, it enables ±0.5° electrical angle control for precise motor performance.  (2) Suppression of Parasitic Inductance Interference  In low-side sensing, the NSCSA21x-Q effectively mitigates “ground bounce” effects through PWM rejection, maintaining high accuracy even with small current signals. With a 130dB CMRR and only ±5μV input offset, it ensures signal integrity under severe transient conditions.  (3) Reverse Battery Protection  Withstands up to –28V reverse voltage, safeguarding the system against battery misconnection and simplifying protection circuit design.  Robust Performance Across All Operating Conditions  Breaking conventional design limits, the NSCSA21x-Q series supports a wide –2V to 28V common-mode range with built-in PWM suppression and chip-level reverse-voltage tolerance. Even under –28V reverse common-mode stress, the device quickly resumes normal operation. In rigorous transient tests (–2V to 12V step change), it achieves a <5μs recovery time and <50mV output disturbance, making it ideal for high-accuracy current detection in motor drives and solenoid control under PWM switching environments.  Precision and Stability Across Temperature Extremes  Featuring a ±5μV (typical) input offset voltage and ±0.5% maximum gain error, the NSCSA21x-Q maintains outstanding accuracy over a full –40°C to 125°C temperature range. With a temperature drift as low as 0.05μV/°C, it ensures stable measurements in harsh automotive and industrial conditions.Input Offset Voltage Distribution of NSCSA21x-Q SeriesCommon-Mode Rejection Ratio (CMRR) Distribution of NSCSA21x-Q Series  Fast Dynamic Response and Strong Transient Protection  With a 200kHz bandwidth (50V/V gain) and a 2V/μs slew rate, the NSCSA21x-Q supports fast current variation monitoring and real-time protection. Compared to mainstream alternatives, it achieves up to 3× faster transient response, meeting the needs of high-speed applications such as motor control and power protection.  Flexible Configurations with Automotive-Grade Reliability  The NSCSA21x-Q series offers four fixed gain options (50V/V, 75V/V, 100V/V, and 200V/V), covering both industrial and automotive versions. Packaged in an ultra-compact SC70-6 (2mm × 1.25mm) footprint, it's pin-compatible with industry standards, enabling smaller system size and higher design efficiency.Four Fixed-Gain Versions of the NSCSA21x-Q Series  The NSCSA21x-Q series is AEC-Q100 Grade 1 qualified, supporting –40°C to +125°C operation and ensuring long-term reliability in automotive environments.
Key word:
Release time:2026-01-15 17:20 reading:1331 Continue reading>>
Affordable Standard Precision Positioning GNSS Solutions for India's Connected Future
Key word:
Release time:2026-01-13 14:59 reading:1255 Continue reading>>
SIMCom:Affordable Standard Precision Positioning GNSS Solutions for India's Connected Future
Key word:
Release time:2026-01-08 15:19 reading:906 Continue reading>>
GigaDevice Achieves ISO/SAE 21434 Certification and ASPICE CL2 Assessment, Strengthening Automotive Cybersecurity Together with TÜV Rheinland
  GigaDevice, a leading semiconductor company specializing in Flash memory, 32-bit microcontrollers (MCUs), sensors, and analog products, has been awarded the ISO/SAE 21434 Road Vehicles Cybersecurity Engineering certification by TÜV Rheinland. In parallel, the MCAL (Microcontroller Abstraction Layer) software of GD32A7 automotive-grade MCUs successfully passed the ASPICE Capability Level 2 (CL2) assessment. These milestones demonstrate GigaDevice’s alignment with internationally recognized practices in automotive cybersecurity and software project management, reinforcing its competitiveness in the global automotive electronics market.  ISO/SAE 21434, jointly issued by ISO and SAE, defines a comprehensive cybersecurity risk-management framework that spans the entire vehicle lifecycle. As vehicles become increasingly connected and intelligent, cybersecurity has emerged as a foundational requirement for protecting user privacy and ensuring a secure, reliable mobility experience. Achieving this certification confirms that GigaDevice has established an end-to-end cybersecurity governance framework across the design, development, and mass-production phases of its automotive product portfolio—helping customers streamline compliance, accelerate program approvals, and enhance market competitiveness.  The ASPICE assessment model, governed by the German Association of the Automotive Industry (VDA), is one of the industry's most important standards for evaluating software development capability. ASPICE CL2 requires companies to adopt structured processes for project planning, monitoring, and traceability. Developed in full compliance with AUTOSAR, the GD32A7 MCAL software supports major compilers and debugging toolchains while meeting both functional-safety and cybersecurity requirements. Passing ASPICE CL2 affirms the maturity of GigaDevice’s software-development lifecycle and underscores its commitment to high-reliability automotive solutions.  Driven by new infrastructure such as 5G, AI, and the IoT, vehicles are evolving into interactive intelligent terminals. Automotive-grade chips play a central role in this transition, enabling continuous advancements in vehicle intelligence. Designed for next-generation automotive platforms, the GD32A7 series leverages the Arm® Cortex®-M7 core and offers multiple configurations, including single-core, multi-core, and lockstep architectures. With a maximum frequency of 320MHz and up to 1300 DMIPS of compute performance, the devices support 2.97V–5.5V operation and deliver stable performance across a –40°C to +125°C temperature range. The series are well suited for applications such as body electronics, intelligent cockpit systems, chassis control, and powertrain subsystems.  The GD32A71x/GD32A72x families comply with ISO 26262 ASIL B, while the GD32A74x series supports ASIL D requirements. All product lines integrate a Hardware Security Module (HSM) with TRNG, AES, HASH, ECC/RSA, and Chinese SM2/SM3/SM4 cryptographic engines, meeting the Evita Full information-security architecture and providing robust data protection for in-vehicle systems.  Wenxiong Li, Vice President of GigaDevice and General Manager of the Automotive BU, stated: “Achieving ISO/SAE 21434 certification and ASPICE CL2 capability assessment marks an important milestone in elevating our automotive-grade MCU development to higher standards of security and process maturity. GigaDevice will continue to expand the GD32 MCU automotive portfolio and deepen our collaboration with TÜV Rheinland to deliver higher-performance, higher-security products and a more complete ecosystem for our customers.”  Bin Zhao, General Manager of Industrial Services and Cybersecurity at TÜV Rheinland Greater China commented: “GigaDevice has demonstrated exceptional execution and technical competence in establishing automotive cybersecurity systems and software development processes. Obtaining ISO/SAE 21434 certification and ASPICE CL2 capability assessment provides strong validation for its entry into global automotive supply chains. We look forward to further collaboration to advance innovation and deployment in automotive electronics safety.”  GigaDevice and TÜV Rheinland also announced the establishment of a strategic partnership focused on functional safety, cybersecurity, personnel training, and certification services. The collaboration aims to integrate both parties' strengths to enhance competitiveness across automotive, industrial, and emerging markets—delivering safer and more reliable products and solutions to customers worldwide.
Key word:
Release time:2025-12-26 16:25 reading:968 Continue reading>>
Murata:SCH16T-K20 High-Precision 6-Axis IMU for Robotics and Camera Systems
  Murata Manufacturing Co., Ltd. has announced the expansion of its SCH16T series of high-performance inertial measurement units (IMUs) with the introduction of the SCH16T-K20, targeting industrial, prosumer, and consumer markets worldwide. Designed for OEMs in robotics, drones, and camera systems, as well as IMU module manufacturers and system integrators requiring safety-critical IMUs, the SCH16T-K20 delivers market-leading precision, mechanical robustness, and reliability.  In demanding inertial measurement applications such as dead-reckoning navigation as well as drone and camera stabilization, small measurement errors can accumulate over time leading to unpredictable measurement results. In these applications, key IMU parameters such as noise density, offset bias drift, and vibration rectification ultimately limit the end-application performance and achievable response speed. Murata improves all the key areas with the new SCH16T-K20, which features a brand-new MEMS accelerometer and improved gyroscope temperature calibration.  The SCH16T-K20 is a 6 axis IMU with a typical gyroscope noise density of 0.0004 (°/s)/√Hz, gyroscope bias instability of 0.3 °/h, and accelerometer noise density as low as 33 µg/√Hz. Like all other SCH16T products, the SCH16T-K20 has a wide operating temperature range from -40 °C to +110 °C, a supply voltage of 3.0–3.6 V, and I/O voltage of 1.7–3.6 V, and a compact size of 0.46 × 0.53 × 0.11 inch (11.8 × 13.4 × 2.9 mm).  The driver behind the SCH16T-K20 accelerometer performance improvement is the brand-new accelerometer MEMS based on Murata’s proven 3D MEMS technology. The new MEMS uses a double-differential measurement principle, familiar from current SCA3400 and legacy SCA103T series sensors. The double differential measurement enables SCH16T-K20’s market leading low noise density, as well as thermal and lifetime stability.  The SCH16T-K20 also includes an enhanced version of the market-leading low-noise SCH16T gyroscope, now tuned specifically for the -40 °C to +85 °C temperature range to enable low offset bias shift across that range. All SCH16T series products are carefully validated with a test set based on AEC-Q100 operating temperature Grade 1 (-40 °C to +125 °C) standards*, ensuring reliable operation over a wide temperature window. The series sensors include market-leading self-diagnostic features, making them suitable for safety-critical applications. Murata’s unique MEMS stands out in the competitive IMU market for its exceptional mechanical resilience to shocks and vibration rectification. The series’ robust design and reliability contribute to longer device lifespans and reduced waste.  The SCH16T-K20 becomes the highest-performing variant in the SCH16T lineup while maintaining pin-to-pin and software compatibility. This compatibility makes integration of different SCH16T variants easy for OEMs and module designers. Mass production of the SCH16T-K20 is scheduled to begin in the first half of 2026. Murata will continue developing sensor solutions aligned with evolving market demands, contributing to safer, more sustainable, and higher-performing technologies across industrial and consumer markets.
Key word:
Release time:2025-12-26 16:09 reading:916 Continue reading>>
Renesas Releases its First Wi-Fi 6 and Wi-Fi/Bluetooth LE Combo MCUs for IoT and Connected Home Applications
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced the RA6W1 dual-band Wi-Fi 6 wireless microcontroller (MCU), along with the RA6W2 MCU that integrates both Wi-Fi 6 and Bluetooth® Low Energy (LE) technologies. These connectivity devices address the growing demand for always-connected, ultra-low-power IoT devices across smart home, industrial, medical and consumer applications. Renesas also launched fully integrated modules that accelerate development with built-in antennas, wireless protocol stacks, and pre-validated RF connectivity.  Ultra Low Power Operation for Always-Connected IoT  Today’s IoT devices must stay always connected to improve application usability and response time, while maintaining the lowest possible power consumption to extend battery life or to meet eco-friendly regulations. Renesas’ Wi-Fi 6 MCUs offer features such as Target Wake Time (TWT), which enables extended sleep times without compromising cloud connectivity and power consumption. This is critical for applications such as environmental sensors, smart locks, thermostats, surveillance cameras, and medical monitors, where real-time control, remote diagnostics and over-the-air (OTA) updates are critical.  Additionally, both MCU Groups are optimized for ultra-low power consumption, consuming as little as 200nA to 4µA in sleep mode and under 50µA in Delivery Traffic Indication Message (DTIM10). With the “sleepy connected” Wi-Fi functionality, these devices stay connected with minimal power draw, meeting the growing requirements of modern energy efficiency standards.  Scalable RA MCU Architecture with Full Software Support  Built on the Arm® Cortex®-M33 CPU core running at 160 MHz with 704 KB of SRAM, the MCUs enable engineers to develop cost-effective, standalone IoT applications using integrated communication interfaces and analog peripherals, without the need for an external MCU. Customers also have the option to design with a host MCU that can be selected from Renesas’ broad RA MCU offerings and attach the RA6W1 and RA6W2 as connectivity and networking add-ons. Both RA6W1 and RA6W2 are designed to work with Renesas’ Flexible Software Package (FSP) and e² studio integrated development environment. As the first Wi-Fi MCUs in the RA portfolio, they offer a scalable platform that supports seamless software reuse across the RA family.  High Performance Dual-Band Wi-Fi 6 with 2.4 and 5 GHz Connectivity  With support for both 2.4 and 5 GHz bands, both MCUs deliver superior throughput, low latency, and reduced power consumption. The dual-band capability dynamically selects the most suitable band based on real-time conditions, ensuring a stable and high-speed connection even in environments with many connected devices. Advanced features such as Orthogonal Frequency Division Multiple Access (OFDMA) and TWT boost performance and energy efficiency, making these solutions well suited for dense urban environments and battery-powered devices.  Robust Security and Matter-Certified Interoperability  The RA6W1 and RA6W2 devices offer advanced built-in security including AES-256 encryption, secure boot, key storage, TRNG, and XiP with on-the-fly decryption to keep data safe from unauthorized access. The RA6W1 is RED certified (Radio Equipment Directive), which makes it easier for developers to future-proof their design. Additionally, the device is Matter ready and certified with Matter 1.4, and is compatible across smart home platforms. Renesas supports both MCUs and modules through the Renesas Product Longevity Program, offering 15-year support for MCUs and 10 years for modules.  “We’re offering our customers the flexibility to design with a standalone Wi-Fi device, a Wi-Fi/Bluetooth LE combo, or fully integrated modules depending on their needs,” said Chandana Pairla, VP of the Connectivity Solutions Division at Renesas. “These wireless solutions save power, simplify system design and lower BOM cost. With hosted or hostless implementation options, customers can confidently begin their wireless onboarding journey and seamlessly integrate into next-generation connected systems.”  Two types of modules, Wi-Fi 6 (RRQ61001) and Wi-Fi/Bluetooth LE combo (RRQ61051) simplify design by integrating certified RF components and wireless connectivity stacks that comply with global network standards. Supported RF certification standards include the U.S. (FCC), Canada (IC), Brazil (ANATEL), Europe (CE/RED), UK (UKCA), Japan (Telec), South Korea (KCC), China (SRRC) and Taiwan (NCC). By integrating connectivity at the system level, the modules significantly reduce design effort and accelerate time to market.  Winning Combinations  Renesas offers “Advanced Low-Power Wireless HMI for Household Appliances” and “Automatic Pet Door & Tracking System” that combine the new Wi-Fi 6 MCU and Wi-Fi/Bluetooth LE MCU with numerous compatible devices from its portfolio to offer a wide array of Winning Combinations. Winning Combinations are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market. Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly. They can be found at renesas.com/win.  Availability  The RA6W1 MCU is now available in FCQFN and WLCSP packages, along with the RRQ61001 and RRQ61051 modules. The RA6W2 MCU (BGA package) will be available in Q1/2026. The devices are supported by the FSP, e² studio, evaluation kit and software development kit (SDK) that include flash memory, PCB trace antennas, connectors and embedded power profiler for power consumption analysis. Renesas also offers comprehensive software tools to aid system application development, as well as the Production Line Tool (PLT) for production testing of wireless MCUs.
Key word:
Release time:2025-12-12 16:28 reading:1239 Continue reading>>
ROHM launches RPR-0730: High-Speed, High-Precision Optical Sensor Featuring VCSEL Technology
  ROHM has developed the “RPR-0730”, analog compact optical sensor, capable of high-precision detection of fast-moving objects. This sensor can be widely utilized in consumer and industrial equipment applications, including printers and conveyor systems.  As industrial and office equipment becomes increasingly sophisticated and automated, there is a growing demand for improved sensing technology accuracy. In applications such as label printers, material or product transport systems, and copiers, the need for technology that can identify objects more accurately is essential. Moreover, increased speed driven by productivity improvements makes the introduction of high-speed, high-precision optical sensors crucial.  The RPR-0730 is a compact reflective optical sensor (photo reflector). It employs an infrared VCSEL, which offers higher directionality than LEDs, enabling detection of finer objects. Furthermore, by using a phototransistor with analog output as the receiver, the sensor achieves a response time of 10µs. This dual combination enables high-speed, accurate identification of fine lines as narrow as 0.1mm - previously difficult to detect with conventional LED light sources. As an addition to the existing digital output sensor “RPR-0720” series, RPR-0730 expands capability to applications requiring faster sensing, such as print detection in copiers, label printers, or rotational detection in motors and gears.  The package is ultra-compact at 2.0mm × 1.0mm × 0.55mm and employs a visible light filtering resin to suppress interference from ambient light or sunlight. This enables stable detection even in environments with varying light conditions, such as factories or outdoors. The sensor can also be easily integrated into equipment requiring installation in small, confined spaces, like inside conveyors or precision instruments, making it suitable for a wider range of applications.  Mass production of the new product commenced in October 2025 (sample price: $2.2/unit, tax excluded).  Going forward, ROHM will continue to leverage its development expertise in light-emitting and light-receiving elements to create sensing products that meet customer needs, contributing to the miniaturization and enhanced convenience of various devices.  Application Examples  •Print detection, paper feed/jam detection in label printers, copiers, shredders, etc.  •Object detection of packages/specimens, workpiece position detection in conveyance systems, automatic inspection equipment, etc.  •Motor/gear rotational detection in industrial robots, etc.  Terminology  Photo reflector  A type of optical sensor combining an emitting element and a receiving element. It illuminates an object and detects the intensity of the reflected light to measure the presence or distance of an object.  VCSELL  Abbreviation for Vertical Cavity Surface Emitting LASER. A type of laser light source, it is a semiconductor laser that can emit light directly from its surface. Compared to LEDs, it offers higher directionality and is suitable for high-precision sensing. Originally adopted for optical communication applications, its use as a light source for proximity sensors and distance sensors has been expanding in recent years.  Phototransistor  A transistor-type photoelectric conversion element that converts optical signals into electrical signals. It integrates a photodiode and a transistor, controlling the base current with light to output an amplified collector current.
Key word:
Release time:2025-12-04 17:04 reading:949 Continue reading>>

Turn to

/ 70

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
model brand To snap up
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code