ROHM Develops Breakthrough Schottky Barrier Diode Combining Low VF and IR for Advanced Image Sensor Protection
  ROHM has developed an innovative Schottky barrier diode that overcomes the traditional VF / IR trade-off. This way, it delivers high reliability protection for a wide range of high-resolution image sensor applications, including ADAS cameras.  Modern ADAS cameras and similar systems require higher pixel counts to meet the demand for greater precision. This has created a growing concern – the risk of damage caused by photovoltaic voltage generated under light exposure during power OFF. While low-VF SBDs are effective countermeasures, low IR is also essential during operation to prevent thermal runaway. However, simultaneously achieving both low VF and IR has been a longstanding technical challenge. ROHM has overcome this hurdle by fundamentally redesigning the device structure – successfully developing an SBD that combines low VF with low IR which is ideal for protection applications.  The RBE01VYM6AFH represents a novel concept: leveraging the low-VF characteristics of rectification SBDs for protection purposes. By adopting a proprietary architecture, ROHM has achieved low IR that is typically difficult to realize with low VF designs. As a result, even under harsh environmental conditions, the device meets market requirements by delivering VF of less than 300mV (at IF=7.5mA even at Ta=-40°C), and an IR of less than 20mA (at VR=3V even at Ta=125°C.) These exceptional characteristics not only prevent circuit damage caused by high photovoltaic voltage generated when powered OFF, but also significantly reduce the risk of thermal runaway and malfunction during operation.  The diode is housed in a compact flat-lead SOD-323HE package (2.5mm × 1.4mm / 0.098inch × 0.055inch) that offers both space efficiency and excellent mountability. This enables support for space-constrained applications such as automotive cameras, industrial equipment, and security systems. The RBE01VYM6AFH is also AEC-Q101 qualified, ensuring suitability as a protection device for next-generation automotive electronics requiring high reliability and long-term stability.  Going forward, ROHM will focus on expanding its lineup with even smaller packages to address continuing miniaturization demands.  Key Specifications  Application Examples  Image sensor-equipped sets such as ADAS cameras, smart intercoms, security cameras, and home IoT devices.  Terminology  Photovoltaic Voltage  A term commonly used with optical sensors, referring to the voltage produced when exposed to light. In general, the stronger the light intensity or higher the pixel count the greater voltage generated.
Key word:
Release time:2025-10-27 16:49 reading:324 Continue reading>>
GigaDevice Deepens Commitment to Japan, Advancing Local Services and Global Collaboration
  GigaDevice, a leading semiconductor company specializing in Flash memory, 32-bit microcontrollers (MCUs), sensors, and analog products, has officially opened its new office in Minato City, Tokyo. This milestone reflects the company's deepening commitment to the Japanese market and marks a significant step in enhancing local customer support, strengthening regional collaboration, and advancing its global development efforts.  Japan has long served as a vital pillar of GigaDevice's global strategy. Over the years, the company has expanded its local team, refined operation to meet evolving customer needs, and established a responsive professional service system. This new office will further enhance GigaDevice's technical responsiveness and agility, foster closer collaboration with customers, and help accelerate product validation and commercialization in today's fast-changing market landscape.  Working closely with customers in Japan, GigaDevice has broadened the adoption of its solutions across key application sectors such as industrial, automotive, consumer electronics, and the Internet of Things. At the same time, the company continues to deepen cooperation with local partners in supply chain integration and ecosystem development, offering a comprehensive portfolio of Flash memory, MCU, sensor, and analog solutions that have earned broad market recognition.  "Japan has always been a vital component of our global strategy," said Jennifer Zhao, GigaDevice Global Business CEO. "We will continue to leverage our global synergy and strengthen local service capabilities to drive product innovation and industry advancement alongside our customers and partners."  "We greatly value the trust and long-term partnerships we have built with our customers in Japan," added Sam Li, GigaDevice Japan Regional GM, "In a market that's becoming increasingly complex, our goal is to consistently deliver exceptional service and competitive products that meet diverse business needs and create lasting value."  As one of GigaDevice's key customers, Nidec Corporation has been working closely with the company. Ryuji Omura, Head of Nidec Semiconductor Solutions Center, commented: "GigaDevice's rapid growth and technological innovation, along with its genuine commitment to customers, have built a solid foundation of trust between our companies and made it one of our most valued supplier partners. We look forward to seeing GigaDevice continue to lead the semiconductor industry and contribute to the advancement of society."  As a global leading fabless supplier, GigaDevice continues to combine global synergy with localized execution. Following the establishment of its global headquarters in Singapore, the company has strengthened its presence across Asia, Europe, and the Americas, building a responsive, demand-driven sales and service network. Looking ahead, GigaDevice will continue to invest in Japan, refining its product offerings, enhancing its service delivery, and expanding its collaborative mechanisms to drive a smarter, more efficient, and sustainable future together with its customers and partners.
Key word:
Release time:2025-10-21 16:49 reading:368 Continue reading>>
TAIYO YUDEN Commercializes 1005M-Size Embeddable Multilayer Ceramic Capacitor with 22-μF Capacitance for AI Servers
  TAIYO YUDEN CO., LTD. has commercialized and begun mass production of embeddable multilayer ceramic capacitor (MLCC) that achieves a capacitance of 22-μF in a 1005M size (1.0 x 0.5 mm).  This ceramic capacitor is an MLCC designed for decoupling applications on IC power lines used in AI servers and other types of information devices.  Components embedded in a board require high precision in terms of flatness of the external electrodes for connection to the circuit. With respect to this requirement, TAIYO YUDEN has commercialized an embeddable MLCC that achieves a 22-μF capacitance in a 1005M size by enhancing external electrode formation technology and other elemental technologies.  Mass production of the capacitor began at our Tamamura Plant (Sawa District, Gunma Prefecture) in August 2025. Samples are available for 20 yen per unit.  Technology Background  AI servers and other types of devices with advanced information processing capabilities are equipped with ICs that consume extremely large amounts of power. For decoupling purposes in such power supply circuits, small, high-capacity MLCCs are required to handle large currents.  Additionally, to minimize circuit loss and noise, it is important to route the power supply circuit close to the ICs. Traditional power supply circuits are routed around ICs. But, technological developments are progressing, allowing them to be placed closer, such as on the back of the board or directly under the ICs. Thus, embeddable MLCCs need to be equipped with high-precision external electrodes to connect to the lines.  To satisfy this need, TAIYO YUDEN has improved its external electrode formation technology and commercialized 1005M-size embeddable MLCC with a capacitance of 22 μF.  TAIYO YUDEN is continuing to develop new MLCCs with higher capacitance and other distinguishing features.  ■ Application  Decoupling applications on IC power lines used in AI servers and other types of information devices
Key word:
Release time:2025-10-20 16:40 reading:340 Continue reading>>
ROHM Publishes White Paper on Power Solutions for Next-Generation 800 VDC Architecture Aligned with the Industry's 800 VDC Roadmap to Enable Gigawatt-Scale AI Infrastructure
  ROHM has released a new white paper detailing advanced power solutions for AI data centers based on the novel 800 VDC architecture, reinforcing its role as a key semiconductor industry player in driving system innovation.  As part of the collaboration announced in June 2025, the white paper outlines optimal power strategies that support large-scale 800 VDC power distribution across AI infrastructure.  The 800 VDC architecture represents a highly efficient, scalable power delivery system poised to transform data center design by enabling gigawatt-scale AI factories. ROHM offers a broad portfolio of power devices, including silicon (Si), silicon carbide (SiC), and gallium nitride (GaN), and is among the few companies globally with the technological expertise to develop analog ICs (control and power ICs) capable of maximizing device performance.  Included in the white paper are ROHM’s comprehensive power solutions spanning a wide range of power devices and analog IC technologies, supported by thermal design simulations, board-level design strategies, and real-world implementation examples.  [Access the white paper here]  Key Highlights of the White Paper• Rising Rack Power Consumption: Power demand per rack in AI data centers is rapidly increasing, pushing conventional 48V/12V DC power supply systems to their limits.  • Shift to 800 VDC: Transitioning to an 800 VDC architecture significantly enhances data center efficiency, power density, and sustainability.  • Redefined Power Conversion: In the 800 VDC system, AC-DC conversion (PSU), traditionally performed within server racks, is relocated to a dedicated power rack.  • Essential Role of SiC and GaN: Wide bandgap devices are critical for achieving efficient performance. With AC-DC conversion moved outside the IT rack, higher-density configurations inside the IT rack can better support GPU integration.  • Optimized Conversion Topologies: Each conversion stage—from AC to 800 VDC in the power rack and from 800 VDC to lower voltages in the IT rack—requires specialized solutions. ROHM’s SiC and GaN devices contribute to higher efficiency and reduced noise while decreasing the size of peripheral components, significantly increasing power density.  • Breakthrough Device Technologies: ROHM’s EcoSiC™ series offers industry-leading low on-resistance and top-side cooling modules ideal for AI servers, while the EcoGaN™ series combines GaN performance with proprietary analog IC technologies, including Nano Pulse Control™. This allows for stable gate drive, ultra-fast control, and high-frequency operation–features that have earned strong market recognition.  The shift to 800 VDC infrastructure is a collective industry effort. ROHM is working closely with NVIDIA, data center operators, and power system designers to deliver essential wide bandgap semiconductor technologies for next-generation AI infrastructure. Through strategic collaborations, including a 2022 partnership with Delta Electronics, ROHM continues to drive innovation in SiC and GaN power devices, enabling powerful, sustainable, and energy-efficient data center solutions.  ROHM’s EcoSiC™  EcoSiC™ is ROHM’s brand of devices that utilize silicon carbide, which is attracting attention in the power device field for performance that surpasses silicon. ROHM independently develops technologies essential for the advancement of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.  ・EcoSiC™ is a trademark or registered trademark of ROHM Co., Ltd.
Key word:
Release time:2025-10-15 11:50 reading:493 Continue reading>>
Renesas Powers 800 Volt Direct Current AI Data Center Architecture with Next-Generation Power Semiconductors
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, announced that it is supporting efficient power conversion and distribution for the 800 Volt Direct Current power architecture announced by NVIDIA, helping fuel the next wave of smarter, faster AI infrastructure.  As GPU-driven AI workloads intensify and data center power consumption scales into multi-hundred megawatt territory, modern data centers must adopt power architectures that are both energy optimized and scalable. Wide bandgap semiconductors such as GaN FET switches are quickly emerging as a key solution thanks to their faster switching, lower energy losses, and superior thermal management. Moreover, GaN power devices will enable the development of 800V direct current buses within racks to significantly reduce distribution losses and the need for large bus bars, while still supporting reuse of 48V components via DC/DC step-down converters.  Renesas’ GaN based power solutions are especially suited for the task, supporting efficient and dense DC/DC power conversion with operating voltages of 48V to as high as 400V, with the option to stack up to 800V. Based on the LLC Direct Current Transformer (LLC DCX) topology, these converters achieve up to 98 percent efficiency. For the AC/DC front-end, Renesas uses bi-directional GaN switches to simplify rectifier designs and increase power density. Renesas REXFET MOSFETs, drivers and controllers complement the BOM of the new DC/DC converters.   “AI is transforming industries at an unprecedented pace, and the power infrastructure must evolve just as quickly to meet the explosive power demands,” said Zaher Baidas, Senior Vice President and General Manager of Power at Renesas. “Renesas is helping power the future of AI with high-density energy solutions built for scale, supported by our full portfolio of GaN FETs, MOSFETs, controllers and drivers. These innovations will deliver performance and efficiency, with the scalability required for future growth.”  Renesas Power Management Leadership  A world leader in power management ICs, Renesas ships more than 1.5 billion units per year, with increased shipments serving the computing industry, and the remainder supporting industrial and Internet of Things applications as well as data center and communications infrastructure. Renesas has the broadest portfolio of power management devices, delivering unmatched quality and efficiency with exceptional battery life. As a trusted supplier, Renesas has decades of experience designing power management ICs, backed by a dual-source production model, the industry’s most advanced process technology, and a vast network of more than 250 ecosystem partners.  About Renesas Electronics Corporation  Renesas Electronics Corporation (TSE: 6723) empowers a safer, smarter and more sustainable future where technology helps make our lives easier. A leading global provider of microcontrollers, Renesas combines our expertise in embedded processing, analog, power and connectivity to deliver complete semiconductor solutions. These Winning Combinations accelerate time to market for automotive, industrial, infrastructure and IoT applications, enabling billions of connected, intelligent devices that enhance the way people work and live. 
Key word:
Release time:2025-10-13 13:29 reading:404 Continue reading>>
Driving Innovation Together: NOVOSENSE, UAES and Innoscience Join Forces to Reshape Power Electronics for New Energy Vehicles
  September 29, 2025 – NOVOSENSE Microelectronics, United Automotive Electronic Systems (UAES) and Innoscience have signed a strategic cooperation agreement to jointly advance power electronics for new energy vehicles (NEVs). The three parties will collaborate on the development of next-generation intelligent integrated Gallium Nitride (GaN) products. Building on their combined expertise, the new devices will deliver more reliable GaN driving and protection features, enabling higher power density and paving the way for commercial adoption across the automotive industry.Signing Ceremony  GaN as a Key Driver for NEV Innovation  With its superior material properties, GaN is emerging as a transformative technology in automotive power electronics. Compared to traditional silicon devices, GaN significantly improves system efficiency and power density, allowing for more compact and lighter designs—addressing the core requirements of vehicle electrification and lightweighting.  Complementary Strengths, Shared Goals  Through joint R&D and application validation, NOVOSENSE, UAES and Innoscience aim to tackle critical challenges such as efficiency, reliability and cost. Together, the three parties will deliver solutions that combine high performance with competitive economics. NOVOSENSE brings extensive expertise in high-performance analog and mixed-signal IC design. UAES contributes deep knowledge in system integration and automotive applications. Innoscience adds world-leading competence in GaN device technology. This cross-disciplinary collaboration establishes a platform for innovation across the entire value chain, accelerating GaN adoption in next-generation automotive systems.  Dr. Xiaolu Guo, Deputy General Manager of UAES, said:“UAES has been at the forefront of automotive electronics for decades, consistently responding to industry needs through innovation. GaN technology is a vital enabler for vehicle electrification. Partnering with NOVOSENSE and Innoscience allows us to integrate capabilities from device to system level, driving GaN industrialization and delivering efficient, reliable and cost-effective solutions for our customers.”  Mr. Shengyang Wang, Founder, Chairman and CEO of NOVOSENSE, commented:“Upgrading the NEV industry requires deep collaboration across the value chain. By combining UAES’s system integration expertise with Innoscience’s GaN leadership and NOVOSENSE’s IC design capabilities, we are creating a powerful synergy. This strategic partnership sets a benchmark for industry collaboration, ensuring both technological breakthroughs and market value creation.”  Dr. Jingang Wu, CEO of Innoscience, added:“The potential of GaN in automotive power electronics is only beginning to be realized. True impact will come from aligning device innovation with system requirements. We look forward to working closely with NOVOSENSE and UAES to extend the boundaries of GaN applications in automotive electrification and to translate technological advantages into tangible industry benefits.”  A Step Forward for the Industry  This strategic cooperation marks a pivotal milestone for all three companies. NOVOSENSE, a leading Chinese automotive semiconductor supplier with nearly one billion automotive ICs shipped, complements UAES’s strong system know-how and Innoscience’s GaN device leadership. Together, the three parties will strengthen the value chain, overcome application bottlenecks, and accelerate the transition of the NEV industry toward higher efficiency and sustainability.
Key word:
Release time:2025-10-09 13:53 reading:447 Continue reading>>
ROHM has Developed New Smart Switches Optimized for Zonal Controllers
  ROHM has developed six new high-side Smart Switches (Intelligent Power Devices, short: IPDs) BV1HBxxxEFJ series (BV1HB008EFJ-C, BV1HB012EFJ-C, BV1HB020EFJ-C, BV1HB040EFJ-C, BV1HB090EFJ-C, BV1HB180EFJ-C) with highly accurate current sensing capability and ON resistances from 9 mΩ to 180 mΩ. They are ideal for protecting loads and subsystems from abnormalities such as overcurrent, overvoltage, and overtemperature, ensuring reliable operation and safeguarding sensitive components in automotive lighting, body control such as, door locks and power windows. Extensive diagnostic capabilities, e.g., open load and reverse battery detection, further enhances safety and reliability.  Vehicle electronic control systems are becoming increasingly sophisticated with the advancement of autonomous driving and electric vehicles (EVs). This evolution has heightened the importance of electronic protection from a functional safety standpoint, driving the shift toward Zonal Controllers architecture that manages vehicle functions in designated zones. As a result, the use of smart switches for electronic load protection and control is rapidly growing.  Zonal controllers must each manage a large number of loads, but conventional smart switches often lack the drive capability required for high-capacitance loads. ROHM’s new smart switches address this challenge, delivering key performance attributes such as low ON resistance and high inductive energy clamp while significantly improving capacitive load drive capability. By commercializing high-performance smart switches tailored to zonal controllers’ requirements, ROHM is contributing to automotive electrification and the elimination of mechanical fuses.  The new products feature exceptional high-capacitance load driving capability, maximizing performance at the critical interface between Zonal Controllers and output loads (including various ECUs). Leveraging proprietary cutting-edge process technology makes it possible to achieve both low ON resistance and high inductive energy clamp – two characteristics typically involve a trade-off. The result is a well-balanced integration of three key performance metrics: drive capability, ON resistance, and energy tolerance. This enhances system design safety, efficiency, and reliability. The devices also incorporate a best-in-class* high-precision current sensing function (±5%) that provides effective protection for harnesses connected to output loads. At the same time, the compact, high heat dissipation HTSOP-J8 package ensures excellent design versatility.  Going forward, ROHM remains committed to improving safety, security, and energy efficiency in the automotive field by continuing to develop high reliability, high performance devices.  *ROHM study on high-side Smart Switches - September 30th, 2025  Application Examples  Body applications, powertrain/inverter systems, other switch-related circuits  Terminology  Zonal Controllers  An emerging design concept in automotive electronic architecture, zonal controllers represent a shift away from the conventional approach of assigning dedicated ECUs for each function, such as lighting, door locks, and power windows. Instead, the vehicle is divided into zones, with a zonal controller manages multiple functions in its zone.  Intelligent Power Devices (IPD) / Smart Switches  Smart power switches are semiconductor devices that electronically control the delivery of power by turning it on and off, while also providing integrated protection and diagnostic features such as overcurrent, overvoltage, thermal shutdown, current sensing, and open load detection to enhance system reliability and safety.  Capacitive Load Driving Capability  A technical term referring to the ability of an electronic circuit or semiconductor device to operate reliably when driving capacitive loads. It is especially important in circuit configurations involving zone ECUs and their output stages (including individual ECUs) where large electrolytic capacitors are commonly used. If this capability is inefficient, inrush current cannot be adequately suppressed, leading to overheating that can result in malfunctions or reduced operational lifespan.
Key word:
Release time:2025-09-30 16:29 reading:426 Continue reading>>
NOVOSENSE launches NSUC1612: Fully Integrated Embedded Motor Drive SoC for Smarter, Cost-Efficient Automotive Actuators
  NOVOSENSE has released the NSUC1612, a next-generation motor driver SoC designed to address the limitations of traditional discrete solutions in automotive smart actuators, such as system complexity, high cost, and limited reliability.  With its fully integrated single-chip architecture, the NSUC1612 can simplify design, reduce cost, and enhance stability. It supports a wide range of applications, including automotive water valves, automotive air-conditioning vent, active grille shutters, as well as stepper motors, DC brushed motors, and DC brushless motors—delivering an efficient and scalable solution for automotive electronics.  1.Fully Integrated Architecture: Simplified Design, Reduced Complexity  Conventional actuator control systems often require multiple components, including MCU, motor drivers, communication interfaces, and protection circuits, leading to complex PCB layout, increased solder joints, and compatibility issues.The NSUC1612 integrates a 32-bit ARM® Cortex®-M3 MCU with 4- or 3-channel half-bridge drivers, LIN/CAN controller communication interfaces, a 12-bit ADC, temperature sensors, and other essential modules, all in a single-chip. This eliminates the need for additional companion ICs while covering the full motor control, communication, and protection process.By reducing external components and simplifying hardware design, the NSUC1612 shortens development cycles and minimizes EMI risk through optimized internal signal routing.  2.Excellent EMC Performance: Reliable Operation in Harsh Environments  Automotive electronics operate in complex electromagnetic conditions where EMC performance directly impacts actuator precision and system stability. The NSUC1612 provides simplified reference circuits and optimized PCB layout. In compliance with CISPR 25:2021 Class 5, it passes stringent automotive EMC/EMI tests, compliant with the automotive standardsSelected Test Results Based on CISPR 25:2021  This ensures stable motor control signals and helps prevent malfunctions such as actuator stalls or misoperation caused by electromagnetic interference.  3.Strong Performance: Balanced Drive Capability and Processing Power  The NSUC1612 is designed to deliver both reliable motor driving capability and efficient computation: NSUC1612B: 4 half-bridge outputs, peak current up to 500 mA NSUC1612E: 3 half-bridge outputs, peak current up to 2.1 AThese options support brushed DC, BLDC, and stepper motors across diverse applications, from HVAC air vent adjustment to seat ventilation.  The ARM® Cortex®-M3 core with Harvard architecture integrates 32 KB Flash, 2 KB SRAM, and 15 KB ROM with Bootloader, supporting OTA upgrades. A 32 MHz high-precision oscillator with PLL ensures stable computation, while low-power sleep mode consumes less than 50 μA across the full operation temperature range, balancing performance with energy efficiency.  4.Automotive-Grade Reliability: Built for Demanding Conditions  The NSUC1612 is designed with comprehensive reliability features to withstand harsh operating environments. It is compliant with AEC-Q100 Grade 1, supporting junction temperatures up to 150°C and ensuring stable operation across a wide temperature range from -40°C to +125°C. The device’s LIN port can tolerate up to ±40 V, while the BVDD pin supports -0.3 V to 40 V, enabling direct connection to 12V automotive batteries. In addition, integrated protection mechanisms such as over-voltage and over-temperature safeguards provide robust defense against voltage fluctuations and transient surges, delivering system-level reliability under real-world automotive conditions.  The NSUC1612 extends its value through broad application compatibility, making it suitable for automotive actuator systems. It supports brushed DC, BLDC, and stepper motors, while integrated communication interfaces—including LIN PHY (compliant with LIN 2.x, ISO 17987, and SAE J2602), FlexCAN, and SPI—allow seamless integration into existing automotive network architectures.  The NSUC1612 is ideal for a wide range of applications, including thermal management components (e.g., automotive water valves and expansion valves), cabin comfort modules (automotive air-conditioning vent), and smart body systems (active grille shutters and charging port actuators). By integrating these functions into a single device, it helps reduce design costs and simplify development.
Key word:
Release time:2025-09-23 13:12 reading:586 Continue reading>>
Renesas Adds Capacitive Touch to Ultra-Low-Power RA0 MCUs
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced the RA0L1 microcontroller (MCU) Group based on the Arm® Cortex®-M23 processor. The new devices offer extremely low power consumption and the industry’s best solution for quickly and economically implementing capacitive touch in battery-powered and other consumer electronics, appliances, white goods and industrial system controls.  Renesas introduced the RA0 MCU series in 2024 and it has quickly become very popular with a wide range of customers due to its affordability and low power consumption. With the addition of capacitive touch functionality, RA0L1 devices offer designers the ability to create responsive, attractive, low-power user interfaces at very low cost.  RA0L1 MCUs deliver industry-leading power consumption of only 2.9mA current in active mode, and 0.92mA in sleep mode. In addition, an integrated High-speed On-Chip Oscillator (HOCO) enables the fastest wake-up time for this class of microcontroller. The fast wake-up enables the RA0L1 MCUs to stay in Software Standby mode more of the time, where power consumption drops to a minuscule 0.25 µA. With this feature, current consumption can be reduced by up to 90 percent compared with other solutions.  Feature Set Optimized for Low Cost  The RA0L1 devices have a feature set optimized for cost-sensitive applications. They offer a wide operating voltage range of 1.6V to 5.5V so customers don’t need a level shifter/regulator in 5V systems. The RA0L1 MCUs also integrate multiple communications interfaces, analog functions, safety functions and security functionality to reduce customer BOM cost. A wide range of packaging options is also available, including a tiny 4mm x 4mm 24-pin QFN.  In addition, the new MCU’s high-precision (±1.0%) HOCO improves baud rate accuracy and enables designers to forego a standalone oscillator. Unlike other HOCOs in the industry, it maintains this precision in environments from -40°C to 125°C. This wide temperature range enables customers to simplify thermal design by avoiding costly and time-consuming “trimming,” even after the reflow process.  Renesas Capacitive Touch Leadership  Renesas provides industry-leading capacitive touch technology, ensuring customers can quickly and cost-effectively implement high-quality touch interfaces in a variety of systems. Its self-capacitance method simplifies waterproof design, offering simpler design and reduced complexity compared to mutual capacitance solutions. Renesas’ multi-frequency measurement meets IEC61000 4-3 Level 4 standards, making it ideal for medical applications that demand robust protection from electromagnetic interference. Renesas also offers specialized development resources for capacitive touch, including the QE for Capacitive Touch that streamlines sensitivity adjustments for capacitive touch buttons, speeding up development.  “The RA0L1 combines the industry-leading power consumption and cost-effectiveness of our RA0 Series MCUs with our unmatched capacitive touch technology and tools,” said Daryl Khoo, Vice President of the Embedded Processing Marketing Division at Renesas. “We look forward to the many innovative touch interface solutions that our customers will create using these devices.”  Key Features of the RA0L1 Group MCUs  Core: 32MHz Arm Cortex-M23  Memory: Up to 64KB integrated Code Flash memory and 16KB SRAM  Extended Temperature Range: Ta -40°C to 125°C  Timers: Timer array unit (16b x 8 channels), 32-bit interval timer (8b x 4 channels), RTC  Communications Peripherals: 3 UARTs, 2 Async UART, 6 Simplified SPIs, 2 I2C, 6 Simplified I2Cs  Analog Peripherals: 12-bit ADC, temperature sensor, internal reference voltage  HMI: Capacitive Touch (up to 24 channels), Controlled Current Drive Port (up to 8)  Safety: SRAM parity check, invalid memory access detection, frequency detection, A/D test, output level detection, CRC calculator, register write protection  Security: Unique ID, TRNG, Flash access window, Flash read protection  Packages: 24-, 32- and 48-pin QFNs, 32-, 48-pin LQFP, 20-pin LSSOP  The new RA0L1 Group MCUs are supported by Renesas’ Flexible Software Package (FSP). The FSP enables faster application development by providing all the infrastructure software needed, including multiple RTOS, BSP, peripheral drivers, middleware, connectivity, networking, and security stacks as well as reference software to build complex AI, motor control and cloud solutions. It allows customers to integrate their own legacy code and choice of RTOS with FSP, thus providing full flexibility in application development. Using the FSP will ease migration to and from other RA family devices.  Winning Combinations  Renesas has combined the new RA0L1 Group MCUs with numerous compatible devices from its portfolio to offer a wide array of Winning Combinations, including the Capacitive Touch Remote Controller. Winning Combinations are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market. Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly.  Availability  The RA0L1 Group MCUs are available now, along with the FSP software, the RA0L1 Fast Prototyping Board and the RA0L1 Renesas Solution Starter Kit for Cap Touch. Samples and kits can be ordered either on the Renesas website or through AMEYA360.
Key word:
Release time:2025-09-18 16:11 reading:589 Continue reading>>
Murata Launches Digital Output SMD Pyroelectric Infrared Sensor for Low Power Applications
  Murata Manufacturing Co., Ltd has launched a digital output SMD pyroelectric infrared sensor, IRS-D200ST00R1, with low power consumption and is already in mass production.  In recent years, the use of IoT technology in smart homes and smart buildings has increased convenience, safety, and power saving within living spaces and facilities. Because of this, the demand for wireless communication units equipped with human detection functions capable of sensing movement in real time is also increasing to realize more efficient and comfortable environments. One of the key technologies to enable the motion detection function is a pyroelectric infrared sensor. Products which communicate wirelessly require long-term stable operation with reduced battery replacement or charging, thus creating a strong need for pyroelectric infrared sensors that can detect human movement while extending battery life. Additionally, to increase design flexibility inside these products, space-saving measures are essential, driving demand for compact infrared sensors., space-saving measures are essential, driving demand for compact infrared sensors.  In response, we developed this product using proprietary pyroelectric ceramic technology to achieve low power consumption and a compact size. Even when continuously operating the human detection function, power consumption is kept low, and the sensor includes an interrupt function that activates the microcontroller only when a change is detected, contributing to extended battery life. Furthermore, the compact size enables space-saving, and the adoption of the digital I2C interface simplifies design during development.  The main features of this product include contributing to overall system power reduction through low power consumption and interrupt functionality, space-saving due to its small and low-profile SMD package, ease of design enabled by built-in amplifier and ADC with digital output (I2C), reduction of false detections and stable operation thanks to high signal-to-noise ratio and EMI noise resistance, Also enabling process cost reduction through reflow compatibility.  Key specifications are a dual element electrode size of 0.08 × 0.02 inch (2.0 × 0.5 mm), an overall size of 0.24 × 0.24 × 0.10 inch (6.0 × 6.0 × 2.6 mm), typical sensitivity of 19.5 mV, element height of 0.065 inch (1.65 mm), field of view of ±55° horizontal and ±42° vertical, supply voltage from 1.8 to 3.3 V, typical current consumption of 8 µA, and an I2C interface.*
Key word:
Release time:2025-09-15 14:09 reading:472 Continue reading>>

Turn to

/ 81

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
model brand To snap up
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code