Driving Innovation Together: NOVOSENSE, UAES and Innoscience Join Forces to Reshape Power Electronics for New Energy Vehicles
  September 29, 2025 – NOVOSENSE Microelectronics, United Automotive Electronic Systems (UAES) and Innoscience have signed a strategic cooperation agreement to jointly advance power electronics for new energy vehicles (NEVs). The three parties will collaborate on the development of next-generation intelligent integrated Gallium Nitride (GaN) products. Building on their combined expertise, the new devices will deliver more reliable GaN driving and protection features, enabling higher power density and paving the way for commercial adoption across the automotive industry.Signing Ceremony  GaN as a Key Driver for NEV Innovation  With its superior material properties, GaN is emerging as a transformative technology in automotive power electronics. Compared to traditional silicon devices, GaN significantly improves system efficiency and power density, allowing for more compact and lighter designs—addressing the core requirements of vehicle electrification and lightweighting.  Complementary Strengths, Shared Goals  Through joint R&D and application validation, NOVOSENSE, UAES and Innoscience aim to tackle critical challenges such as efficiency, reliability and cost. Together, the three parties will deliver solutions that combine high performance with competitive economics. NOVOSENSE brings extensive expertise in high-performance analog and mixed-signal IC design. UAES contributes deep knowledge in system integration and automotive applications. Innoscience adds world-leading competence in GaN device technology. This cross-disciplinary collaboration establishes a platform for innovation across the entire value chain, accelerating GaN adoption in next-generation automotive systems.  Dr. Xiaolu Guo, Deputy General Manager of UAES, said:“UAES has been at the forefront of automotive electronics for decades, consistently responding to industry needs through innovation. GaN technology is a vital enabler for vehicle electrification. Partnering with NOVOSENSE and Innoscience allows us to integrate capabilities from device to system level, driving GaN industrialization and delivering efficient, reliable and cost-effective solutions for our customers.”  Mr. Shengyang Wang, Founder, Chairman and CEO of NOVOSENSE, commented:“Upgrading the NEV industry requires deep collaboration across the value chain. By combining UAES’s system integration expertise with Innoscience’s GaN leadership and NOVOSENSE’s IC design capabilities, we are creating a powerful synergy. This strategic partnership sets a benchmark for industry collaboration, ensuring both technological breakthroughs and market value creation.”  Dr. Jingang Wu, CEO of Innoscience, added:“The potential of GaN in automotive power electronics is only beginning to be realized. True impact will come from aligning device innovation with system requirements. We look forward to working closely with NOVOSENSE and UAES to extend the boundaries of GaN applications in automotive electrification and to translate technological advantages into tangible industry benefits.”  A Step Forward for the Industry  This strategic cooperation marks a pivotal milestone for all three companies. NOVOSENSE, a leading Chinese automotive semiconductor supplier with nearly one billion automotive ICs shipped, complements UAES’s strong system know-how and Innoscience’s GaN device leadership. Together, the three parties will strengthen the value chain, overcome application bottlenecks, and accelerate the transition of the NEV industry toward higher efficiency and sustainability.
Key word:
Release time:2025-10-09 13:53 reading:447 Continue reading>>
ROHM and Infineon collaborate on silicon carbide power <span style='color:red'>electronic</span>s packages to enhance flexibility for customers
  ROHM and Infineon Technologies AG have signed a Memorandum of Understanding to collaborate on packages for silicon carbide (SiC) power semiconductors used in applications such as on-board chargers, photovoltaics, energy storage systems, and AI data centers. Specifically, the partners aim to enable each other as second sources of selected packages for SiC power devices, a move which will increase design and procurement flexibility for their customers. In the future, customers will be able to source devices with compatible housings from both ROHM and Infineon. The collaboration will ensure seamless compatibility and interchangeability to match specific customer needs.  "We are excited about working with ROHM to further accelerate the establishment of SiC power devices," said Dr. Peter Wawer, Division President Green Industrial Power at Infineon. "Our collaboration will provide customers with a wider range of options and greater flexibility in their design and procurement processes, enabling them to develop more energy-efficient applications that will further drive decarbonization."  "ROHM is committed to providing customers with the best possible solutions. Our collaboration with Infineon constitutes a significant step towards the realization of this goal, since it broadens the portfolio of solutions," said Dr. Kazuhide Ino, Member of the Board, Managing Executive Officer, in charge of Power Devices Business at ROHM. "By working together, we can drive innovation, reduce complexity, and increase customer satisfaction, ultimately shaping the future of the power electronics industry."Dr. Peter Wawer, Division President Green Industrial Power at Infineon (left)and Dr. Kazuhide Ino, Member of the Board and Managing Executive Officer at ROHM  As part of the agreement, ROHM will adopt Infineon’s innovative top-side cooling platform for SiC, including TOLT, D-DPAK, Q-DPAK, Q-DPAK dual, and H-DPAK packages. Infineon's top-side cooling platform offers several benefits, including a standardized height of 2.3 mm for all packages. This facilitates designs and reduces system costs for cooling, while also enabling better board space utilization and up to two times more power density.  At the same time, Infineon will take on ROHM’s DOT-247 package with SiC half-bridge configuration to develop a compatible package. That will expand Infineon’s recently announced Double TO-247 IGBT portfolio to include SiC half-bridge solutions. ROHM's advanced DOT-247 delivers higher power density and reduces assembly effort compared to standard discrete packages. Featuring a unique structure that integrates two TO-247 packages, it enables to reduce thermal resistance by approximately 15 percent and inductance by 50 percent compared to the TO-247. The advantages bring 2.3 times higher power density than the TO-247.  ROHM and Infineon plan to expand their collaboration in the future to include other packages with both silicon and wide-bandgap power technologies such as SiC and gallium nitride (GaN). This will further strengthen the relationship between the two companies and provide customers with an even broader range of solutions and sourcing options.  Semiconductors based on SiC have improved the performance of high-power applications by switching electricity even more efficiently, enabling high reliability and robustness under extreme conditions, while allowing for even smaller designs. Using ROHM’s and Infineon’s SiC products, customers can develop energy-efficient solutions and increase power density for applications such as electric vehicle charging, renewable energy systems and AI data centers.  About ROHM  ROHM, a leading semiconductor and electronic component manufacturer, was established in 1958. From the automotive and industrial equipment markets to the consumer and communication sectors, ROHM supplies ICs, discretes, and electronic components featuring superior quality and reliability through a global sales and development network. Our strengths in the analog and power markets allow us to propose optimized solutions for entire systems that combine peripheral components (i.e., transistors, diodes, resistors) with the latest SiC power devices as well as drive ICs that maximize their performance.  Further information is available at https://www.rohm.com  About Infineon  Infineon Technologies AG is a global semiconductor leader in power systems and IoT. Infineon drives decarbonization and digitalization with its products and solutions. The company has around 58,060 employees worldwide and generated revenue of about €15 billion in the 2024 fiscal year (ending 30 September). Infineon is listed on the Frankfurt Stock Exchange (ticker symbol: IFX) and in the USA on the OTCQX International over-the-counter market (ticker symbol: IFNNY).
Key word:
Release time:2025-09-29 14:53 reading:494 Continue reading>>
ROHM at <span style='color:red'>electronic</span>a India 2025: Power and Analog Devices Contributing to the Evolution of Industrial and E-Mobility applications
  From September 17th to 19th, ROHM will exhibit at electronica India 2025, South Asia's leading trade fair for electronic components, systems, applications, and solutions, taking place at the Bangalore International Exhibition Centre (BIEC). At booth H3-E25, ROHM will showcase its latest SiC and GaN technologies, featuring reference designs and evaluation systems that address today’s power and thermal challenges in both industrial equipment and automotive drive systems. Additionally, we will also showcase analog solutions such as power ICs for industrial equipment and automotive LED drivers.  "electronica India 2025 will be the right place to explore real-world applications powered by ROHM’s advanced power semiconductors. With our local design expertise and close cooperation with key players in the Indian market, we are uniquely positioned to support the country’s shift toward more sustainable and efficient electronics," says Makoto Terada, Managing Director, ROHM Semiconductor India.  Highlights of ROHM’s presence at electronica India 2025 include:  For Industrial Applications  ・Locally co-developed reference designs, as part of ROHM’s 'Made in India' initiative, emphasizing faster prototyping and region-specific design optimization, which will be unveiled for the first time.  ・A full lineup of GaN reference designs ranging from 45W to 5.5kW, including compact AC adapters, Totem Pole PFC designs, and server power supplies.  ・ROHM’s 2kV SiC MOSFETs, adopted in SEMITRANS® 20 modules by Semikron Danfoss, powering SMA Solar Technology’s Sunny Central FLEX for utility-scale PV and battery systems.  * SEMITRANS® is a trademark or registered trademark of Semikron Danfoss Elektronik GmbH  For Automotive and E-Mobility  ・TRCDRIVE pack™, a molded SiC module designed for the traction inverter of EVs.  ・New 2-in-1, 4-in-1 and 6-in-1 molded SiC modules for compact and cost-optimized drive solutions.  ・TO-247 discrete SiC MOSFETs shown through practical 3-phase inverter boards for affordable traction systems.  More Information  For additional highlights of ROHM at electronica India 2025, please visit:  www.rohm.com/electronica-india  ROHM’s Power Eco Family: Reliable Solutions Across a Wide range of Applications  ROHM will also feature its Power Eco Family, a branding concept that unites its key power device lines: Each product line will be represented through live demonstrations, adoption cases, and hands-on evaluation tools available at the booth.
Key word:
Release time:2025-09-01 15:11 reading:584 Continue reading>>
Valeo & ROHM Semiconductor co-develop the next generation of power <span style='color:red'>electronic</span>s
  Valeo, a leading automotive technology company, and ROHM Semiconductor, a major semiconductor and electronic component manufacturer, collaborate to propose and optimize the next generation of power modules for electric motor inverters using their combined expertise in power electronics management. As a first step, ROHM will provide its 2-in-1 Silicon Carbide (SiC) molded module TRCDRIVE pack™ to Valeo for future powertrain solutions.  Valeo is broadening access to efficient, electrified mobility across various vehicle types and markets from the smallest one (ebikes), through the mainstream (passenger cars) to the biggest one (eTrucks). By combining Valeo’s expertise in mechatronics, thermal management and software development with ROHM’s power modules, Valeo drives the power electronics solution forward, contributing to the performance, efficiency, and decarbonization of automotive systems worldwide.  Valeo and ROHM have been collaborating since 2022, initially focusing on technical exchanges aimed at improving the performance and efficiency of the motor inverter – a key component in the propulsion systems of electric vehicles (EVs) and plug-in hybrids (PHEVs). By refining power electronics, both companies aim to offer optimized cost/performance by delivering higher energy efficiency, reducing heat generation thanks to an optimized cooling and mechatronic integration, and increasing overall reliability with a SiC packaging.  “This partnership marks, for Valeo Power Division, a significant step forward in delivering advanced and high-efficient power electronics,” says Xavier DUPONT, Valeo Power Division CEO. “Together, we aim to set new industry standards for high voltage inverters and accelerate the transition towards more efficient and affordable electric mobility.”  “We are pleased to support Valeo, a renowned automotive supplier, with our power semiconductors. ROHM’s TRCDRIVE pack™ provides high power density, leading to an improved power efficiency. Together, we contribute to the development of highly efficient powertrains by fostering the collaboration with Valeo,” says Wolfram HARNACK, President ROHM Semiconductor GmbH.  These evolutions are all essential to supporting the growing demand for longer range, faster charging capabilities, and, overall a high-performance and an affordable inverter for BEVs and PHEVs.  Valeo will start supplying a first series project in early 2026. Valeo and ROHM will contribute to the improvement of efficiency and downsizing of Valeo’s next generation of xEV inverters.  Background on the TRCDRIVE pack™  TRCDRIVE pack™ is a trademark for the SiC molded module developed for traction inverter drives. This product features high power density and a unique terminal configuration – solving the key challenges of traction inverters in terms of miniaturization, higher efficiency, and fewer person-hours. Because SiC enables low-loss power conversion under high voltage conditions, combining Valeo's component technology, casing design and thermal management expertise with ROHM's power module creates a synergistic effect. Through both companies’ collaboration in automotive power electronics, they contribute to achieving a decarbonized society by enhancing the performance and efficiency of the motor inverter.  More information is available via:  https://www.rohm.com/news-detail?news-title=2024-06-11_news_trcdrive-pack&defaultGroupId=false  TRCDRIVE pack™ are trademarks or registered trademarks of ROHM Co., Ltd.  About Valeo  Valeo is a technology company and partner to all automakers and new mobility players worldwide. Valeo innovates to make mobility safer, smarter and more sustainable. Valeo enjoys technological and industrial leadership in electrification, driving assistance systems, reinvention of the interior experience and lighting everywhere. These four areas, vital to the transformation of mobility, are the Group's growth drivers.  Valeo in figures: 22 billion euros in sales in 2023 | 109 600 employees, 28 countries, 159 plants, 64 research and development centers and 19 distribution platforms at June 30, 2024.  https://www.valeo.com/  Valeo is listed on the Paris stock Exchange.
Key word:
Release time:2024-11-29 10:49 reading:543 Continue reading>>
ROHM at <span style='color:red'>electronic</span>a 2024: Empowering Growth, Inspiring Innovation
  Willich/Munich, Germany, October 10th, 2024 – ROHM Semiconductor Europe is looking forward to electronica 2024 – the world’s leading trade fair and conference for electronic components, systems, applications, and solutions. The event will take place between November 12th to 15th in Munich.  At booth C3-520, ROHM will showcase its advanced power and analog technologies designed to enhance power density, efficiency, and reliability in both automotive and industrial applications. These advancements are crucial for addressing the increasing demands of modern electronic systems, particularly in the context of sustainability and innovation.  Under the theme "Empowering Growth, Inspiring Innovation," ROHM will highlight via its various demo application stations in “tree style” how its high-quality semiconductor technologies contribute to solving critical social and ecological challenges. The focus will be on driving sustainability in electronic design and innovation, which aligns with the growing emphasis on creating environmentally responsible solutions within the industry.  At electronica 2024, the exhibition space has been greatly expanded and the number of items on display has been increased to 30 – more than three times compared to the previous show.  The latest solutions will be exhibited under the three themes of “for E-Mobility”, “for Automotive”, and “for Industrial”.  For E-Mobility  ・TRCDRIVE pack™ with 2-in-1 SiC Molded Module to improve the efficiency of traction inverters  ・New EcoIGBT™ products for electric compressors  ・New EcoSiC™ Schottky Barrier Diodes for onboard chargers  For Automotive  ・New configurable PMIC with supporting functional safety features for application processors, SoCs and FPGAs  ・LED Driver ICs for Exterior Lighting / Head Lamps  ・Advanced solutions on the ADAS cockpit demo  For Industrial Equipment  ・Industrial AC-DC PWM Controller ICs – support a wide range of power transistors from Si MOSFETs and IGBTs to SiC MOSFETs  ・The EcoGaN™ family of 150V and 650V class GaN HEMTs in several EVKs  ・Latest R&D project on Terahertz  In addition to product showcases, ROHM is committed to fostering technical exchange and collaboration at electronica 2024. "For us, electronica is more than just a showcase – it’s an opportunity to forge new connections, strengthen existing partnerships, and reunite with industry peers," says Wolfram Harnack, President of ROHM Semiconductor Europe. "We are excited to welcome our guests to Munich as we work together to shape the future of electronics."  For a sneak peek at which highlights ROHM will present during electronica 2024, visit our event preview page: https://www.rohm.com/electronica  TRCDRIVE pack™, EcoIGBT™, EcoSiC™ and EcoGaN™ are trademarks or registered trademarks of ROHM Co., Ltd.
Key word:
Release time:2024-11-05 15:56 reading:751 Continue reading>>
AMEYA360 invites you to attend Electronica Munich, Germany!
  The 2024 Munich International Electronic Fair (Electronica) will be held from November 12 to 15 at the Munich Trade Fair Center.Our booth location : B5-520.  Germany Munich Electronics Fair (Electronica), since its inception in 1964, has developed into Europe and even the world's largest and far-reaching electronic components professional exhibition. Every year, the elites of the global electronics industry gather in Munich to review the brilliant achievements of the electronics industry in the past two years and look forward to the future development of the electronics market.  As an excellent stage for industry elites to understand the market news and catch the latest information, the Munich Electronics Fair in Germany brings together the latest innovations of the world's leading electronics companies. Many professional visitors were not only attracted by the release of new products and technologies, but also gained a lot from finding partners and signing cooperation agreements.  The 2022 electronica was an even bigger success, with 14 specialized halls and 2,140 companies from 51 countries and regions, more than 60% of which came from outside Germany. At the same time, 69,783 visitors from 102 countries and regions attended the fair, making it a great success.  AMEYA360, as the industry's leading global one-stop procurement platform for electronic components, will be participated this exhibition. We sincerely invite you to visit Booth 520 in Hall B5 to discuss the development of the industry and participate in the industry big event, and sincerely cooperate with all sectors of society to create a brilliant future blueprint and write a new chapter in development!  Exhibition Overview  Time: November 12 - November 15, 2024  industry: Electronic components  Organizer:Messe Munchen International, Germany  Location: Munich Trade Fair Center, Germany  Holding cycle: every two years  Hall plan:  Range of exhibits  Cars; Display; Electromechanical and system peripherals; Electronic Design (ED/EDA); Embedded system; Electronic Manufacturing Services (EMS); Semiconductor; PCB and other circuit carriers; Test and measurement; Micro-nano system; Passive component; Sensor technology; The service industry; Power supply; System components/assemblies and subsystems; The radio.  About AMEYA360  AMEYA360 Mall (www.ameya360.com)is a one-stop procurement platform for electronic components, independently developed and designed by Shanghai Huanghua Information Technology Co.Ltd. The platform has secured cooperation and authorization from numerous renowned domestic and international brand manufacturers. With diverse range of material categories abundant inventory, and a commitment to quality,AMEYA360 ensures a reliable source for electronic component procurement.  In addition to the online platform, AMEYA360 has also introduced the user-friendly [AMEYA Store] app, which combines various function such as searching, ordering, price quote, making payments, tracking logistics, accessing resources, finding component references, and exploring material replcements.  With its comprehensive features, AMEYA360 caters to the varied demands of the electronic information-related industries. These include small-scale component procurement, ordering for future needs, applying for product samples, and receiving technical support to meet the diverse needs of businesses in the electronics sector.  AMEYA360 will participated in the 2024 Munich Electronica,Germany, hope to discuss industry trends and future development with all business partners & customers in the industry, and explore a new model of innovative cooperation in the supply chain that currently facing many challenges.  AMEYA team is looking forward to see you in Munich this November!  If you are sourcing for any electronics components, you can scan the QR code below for inquiry. For more information, please email dukelee@ameya360.com or call +86 13916138705.
Key word:
Release time:2024-09-02 17:17 reading:1901 Continue reading>>
What are TVS diodes in safeguarding <span style='color:red'>electronic</span>s
  In today’s interconnected world, electronic devices and systems are ubiquitous, powering our homes, workplaces, and communication networks. However, these devices are vulnerable to voltage transients—brief surges in voltage that can occur due to lightning strikes, electrostatic discharge (ESD), or switching transients in the electrical system.  To protect sensitive electronic components from such transients, Transient Voltage Suppressor TVS diodes play a crucial role. This article explores the functionality, applications, and importance of TVS diodes in safeguarding electronics.  What is a Transient Voltage Suppressor (TVS) Diode?A Transient Voltage Suppressor (TVS) diode is a semiconductor device used to protect sensitive electronic components from voltage spikes or transient voltages that could potentially damage them. These spikes can be caused by events such as lightning strikes, electrostatic discharge (ESD), or switching transients in the electrical system.  The TVS diode operates by providing a low-impedance path to divert excess voltage away from the protected components, thus limiting the voltage across them. When a transient voltage exceeds the breakdown voltage (also known as the clamping voltage or avalanche voltage) of the TVS diode, it starts to conduct, effectively shunting the excess current away from the protected circuit.  What are the features of TVS diodes?Fast Response Time: TVS diodes respond quickly to transient events, providing protection within nanoseconds to microseconds.  Low Clamping Voltage: The clamping voltage is the maximum voltage that the TVS diode allows to pass through to the protected circuit. It is typically lower than the voltage tolerance of the protected components, ensuring they remain safe.  High Surge Current Capability: TVS diodes are designed to handle high surge currents associated with transient events, protecting the circuit from damage.  Low Leakage Current: When not conducting, TVS diodes have low leakage current, minimizing power consumption and ensuring minimal impact on the protected circuit during normal operation.  Robustness: TVS diodes are robust devices, able to withstand multiple transient events without degradation in performance.  What are the applications of TVS diode?TVS diodes are commonly used in various applications, including:  Protection of integrated circuits (ICs), microcontrollers, and other semiconductor devices from ESD and voltage transients.  Protection of communication ports (such as USB, Ethernet, HDMI) and data lines in electronic equipment.  Surge protection for power supply lines, signal lines, and sensor inputs in industrial and automotive electronics.  Protection of sensitive electronic equipment against lightning-induced surges in telecommunications, power distribution, and other infrastructure.  What’s the difference between TVS Diodes and Zener Diodes?TVS (Transient Voltage Suppressor) diodes and Zener diodes are both semiconductor devices used for voltage regulation, but they serve different purposes and operate in different ways. Here are the key differences between TVS diodes and Zener diodes:  Purpose:  • TVS Diodes: TVS diodes are primarily used for transient voltage suppression, meaning they protect electronic circuits from voltage spikes or transients caused by events like lightning strikes, electrostatic discharge (ESD), or inductive switching. Their main function is to provide surge protection and prevent damage to sensitive components.  • Zener Diodes: Zener diodes are used for voltage regulation and voltage reference. They operate in the breakdown region and maintain a constant voltage across their terminals when reverse biased. Zener diodes are commonly used in voltage regulation circuits, voltage clamping circuits, and voltage reference circuits.  Operating Principle:  • TVS Diodes: TVS diodes operate by avalanche breakdown or Zener breakdown. When the voltage across a TVS diode exceeds its breakdown voltage, it starts to conduct heavily, providing a low-impedance path for excess current and diverting it away from the protected circuit.  • Zener Diodes: Zener diodes operate in the reverse-biased breakdown region, where they maintain a constant voltage (known as the Zener voltage) across their terminals. They regulate voltage by allowing current to flow in the reverse direction when the applied voltage exceeds the Zener voltage.  Voltage Characteristics:  • TVS Diodes: TVS diodes typically have a very low clamping voltage (Vc) and are designed to handle high surge currents associated with transient events. They are optimized for fast response times and high-energy absorption capabilities.  • Zener Diodes: Zener diodes have a well-defined breakdown voltage (Vz) at which they operate. The voltage across a Zener diode remains relatively constant over a wide range of currents when reverse biased, making them suitable for voltage regulation applications.  Applications:  • TVS Diodes: TVS diodes are used in applications requiring protection against voltage transients, such as in power supplies, communication ports (USB, Ethernet), data lines, and electronic equipment exposed to harsh environments or prone to ESD.  • Zener Diodes: Zener diodes find applications in voltage regulation circuits, voltage references, voltage clamping circuits, reverse voltage protection, and precision voltage measurement circuits.  How do TVS diodes work?  TVS diodes work by providing a low-impedance path for excess voltage, diverting it away from sensitive electronic components and limiting the voltage across them to safe levels. They operate based on two main mechanisms: avalanche breakdown and Zener breakdown. Here’s how TVS diodes work:  Avalanche BreakdownTVS diodes are typically fabricated with a highly doped semiconductor material that has a narrow depletion region. When the diode is reverse-biased (i.e., the voltage applied across it is in the opposite direction of its normal operation), the electric field across the depletion region increases.  If the applied reverse voltage exceeds a certain threshold known as the breakdown voltage (also called clamping voltage or avalanche voltage), the strong electric field can accelerate charge carriers (electrons and holes) to high energies.  These high-energy charge carriers collide with other atoms in the semiconductor lattice, generating additional charge carriers through impact ionization. This process cascades, resulting in a sudden increase in current flow through the diode.  As a result, the TVS diode effectively clamps the voltage across its terminals at the breakdown voltage, providing a low-impedance path for excess current and limiting the voltage seen by the protected circuit.  Zener BreakdownIn addition to avalanche breakdown, some TVS diodes may also utilize Zener breakdown to provide transient voltage suppression. Zener breakdown occurs when the reverse-biased diode operates in its Zener breakdown region.  In this region, the diode behaves as a voltage regulator, maintaining a relatively constant voltage (known as the Zener voltage) across its terminals. When the applied reverse voltage exceeds the Zener voltage, the diode starts conducting heavily, effectively clamping the voltage across it.  What causes a TVS diode to fail?TVS diodes are designed to withstand high levels of transient voltage and provide protection to sensitive electronic components. However, like any electronic component, TVS diodes can fail under certain conditions. Here are some common causes of TVS diode failure:  Overvoltage Conditions: If the transient voltage exceeds the maximum rated clamping voltage (avalanche or Zener breakdown voltage) of the TVS diode, it may fail to suppress the transient effectively. This can happen if the transient event is exceptionally severe or if the TVS diode is underspecified for the application.  Overcurrent Conditions: Excessive current flowing through the TVS diode, either due to a high-energy transient event or a sustained fault condition, can cause the diode to fail. Overcurrent can lead to thermal overstress, causing the diode to overheat and potentially short or open circuit.  Reverse Polarity: Applying a reverse voltage beyond the maximum reverse voltage rating of the TVS diode can cause it to fail. This can occur due to improper installation or incorrect wiring in the circuit.  End-of-Life Wear-Out: Like all semiconductor devices, TVS diodes have a limited lifespan, and their performance may degrade over time due to factors such as aging, temperature cycling, and electrical stress. As the diode approaches the end of its life, its ability to suppress transients effectively may diminish, leading to failure.  Excessive Power Dissipation: TVS diodes are specified with maximum power dissipation ratings. Exceeding these ratings, either due to sustained overvoltage conditions or prolonged exposure to transient events, can cause the diode to overheat and fail.  Manufacturing Defects: Rarely, TVS diodes may fail due to manufacturing defects such as material impurities, processing errors, or incomplete encapsulation. These defects can compromise the electrical and thermal performance of the diode, leading to premature failure.  Improper Handling or Installation: Mishandling or improper installation of TVS diodes, such as mechanical stress during assembly, soldering defects, or exposure to corrosive environments, can lead to physical damage or degradation of the diode, resulting in failure.  ConclusionTVS diodes are essential components in protecting electronic devices and systems from voltage transients. Their ability to clamp voltages and divert excess current away from sensitive components plays a vital role in ensuring the reliability and durability of modern electronics. As the demand for high-performance and reliable electronic products continues to grow, the importance of TVS diodes in safeguarding electronics will only increase, making them indispensable in today’s interconnected world.
Key word:
Release time:2024-07-16 13:08 reading:837 Continue reading>>
EMC Components : Guardians of Electronic Devices
  Electromagnetic interference (EMI) is a pervasive force in our modern world. It emanates from various sources such as radio waves, power lines, and even the devices we use daily. EMI can disrupt the operation of electronic devices, causing malfunctions, data corruption, or complete failure. This interference not only affects the device itself but can also radiate outward, potentially interfering with other nearby electronic systems.  Electromagnetic compatibility EMC components are crucial for addressing electromagnetic interference emissions and susceptibility issues. The correct selection and use of these components are prerequisites for electromagnetic compatibility design.  Therefore, we must have a deep understanding of these components in order to design electronic and electrical products that meet standard requirements and offer the best cost-effectiveness. Each electronic component has its own characteristics, so this article will discuss some common electronic components and circuit design techniques to reduce or suppress electromagnetic compatibility issues.  There are two basic groups of electronic components: leaded and lead-free components. Leaded components have parasitic effects, especially at high frequencies. The leads form a small inductance, approximately 1nH/mm/lead. The ends of the leads also produce a small capacitance effect, around 4pF. Therefore, the length of the leads should be kept as short as possible. Compared to leaded components, lead-free surface-mount components have smaller parasitic effects. Typical values are: 0.5nH parasitic inductance and around 0.3pF terminal capacitance.  EMC components are specialized electronic parts designed to mitigate the effects of electromagnetic interference. They act as shields, filters, and absorbers, safeguarding sensitive electronic circuits from unwanted electromagnetic disturbances. These components come in various forms, each serving a unique purpose in the quest for electromagnetic compatibility.  CapacitorsCapacitors are indispensable elements in EMC design, serving as robust tools for both filtering and bypassing unwanted noise and signals.  At their core, capacitors store and release electrical energy, but in the realm of EMC, they serve a dual purpose. Firstly, capacitors act as filters, blocking high-frequency noise and interference from entering sensitive circuits. By strategically placing capacitors in signal paths or power lines, designers can effectively attenuate EMI, preserving signal integrity and device performance.  Secondly, capacitors act as bypass components, providing a low-impedance path for high-frequency noise to dissipate harmlessly to ground. This prevents noise from propagating through the circuit and interfering with critical operations.  Ferrite Beads and ChokesFerrite beads and chokes are passive components commonly used to suppress high-frequency noise in electronic circuits. By introducing impedance to the flow of high-frequency signals, these components effectively filter out electromagnetic interference. They are often found in power lines, signal cables, and printed circuit boards, where they help maintain signal integrity and prevent interference from disrupting sensitive electronic components.  EMI FiltersEMI filters are active or passive devices that suppress conducted electromagnetic interference by attenuating noise on power lines and signal cables. These filters typically employ a combination of capacitors, inductors, and resistors to shunt high-frequency noise to ground, ensuring that only clean power reaches the electronic device. EMI filters are crucial in applications where strict electromagnetic compatibility standards must be met, such as medical devices, automotive electronics, and telecommunications equipment.  InductorsInductors, vital EMC components, establish a connection between magnetic and electric fields, offering sensitivity crucial for addressing electromagnetic interference (EMI). These components, akin to capacitors, tackle various EMC challenges effectively. There are two fundamental types: open-loop and closed-loop, distinguished by their magnetic field paths. Open-loop inductors, with magnetic fields traversing air, can induce radiation and EMI concerns. Axial winding is preferable over rod or coil designs to confine the magnetic field within the core.  Conversely, closed-loop inductors enclose the magnetic field entirely within a magnetic core, rendering them ideal for circuit design albeit pricier. Ferrite-core inductors are particularly suited for EMC applications due to their capacity to operate at high frequencies, ensuring efficient EMI suppression. In EMC endeavors, ferrite beads and clips emerge as specialized inductor types, catering to unique interference challenges.  Shielding MaterialsShielding materials, such as conductive foils, tapes, and coatings, create a barrier between sensitive electronic components and external electromagnetic fields. They prevent electromagnetic interference from penetrating or escaping from electronic enclosures, thereby minimizing the risk of interference-induced malfunctions. Shielding materials are widely used in consumer electronics, industrial machinery, and aerospace systems to ensure reliable operation in electromagnetic environments.  Surge SuppressorsSurge suppressors, also known as transient voltage suppressors (TVS), protect electronic circuits from voltage spikes and transient surges caused by lightning strikes, electrostatic discharge (ESD), or switching events. These components rapidly divert excess energy away from sensitive electronic components, preventing damage and ensuring the longevity of electronic devices. Surge suppressors find applications in power supplies, data communication systems, and automotive electronics, where robust protection against transient events is essential.  ConclusionThe role of EMC components in ensuring the reliability and performance of electronic devices cannot be understated. From ferrite beads and EMI filters to shielding materials and surge suppressors, these unsung heroes silently guard our electronic world against the invisible forces of electromagnetic interference. As technology marches forward, the importance of EMC components will only continue to grow, shaping the future of electronics in an interconnected world.
Key word:
Release time:2024-06-03 15:43 reading:1004 Continue reading>>
ROHM Group Company SiCrystal and STMicro<span style='color:red'>electronic</span>s Expand Silicon Carbide Wafer Supply Agreement
  Kyoto, Japan and Geneva, Switzerland, April 22, 2024 – ROHM (TSE: 6963) and STMicroelectronics (NYSE: STM), a global semiconductor leader serving customers across the spectrum of electronics applications, announced today the expansion of the existing multi-year, long-term 150mm silicon carbide (SiC) substrate wafers supply agreement with SiCrystal, a ROHM group company. The new multi-year agreement governs the supply of larger volumes of SiC substrate wafers manufactured in Nuremberg, Germany, for a minimum expected value of $230 million.  Geoff West, EVP and Chief Procurement Officer, STMicroelectronics, commented “This expanded agreement with SiCrystal will bring additional volumes of 150mm SiC substrate wafers to support our devices manufacturing capacity ramp-up for automotive and industrial customers worldwide. It helps strengthen our supply chain resilience for future growth, with a balanced mix of in-house and commercial supply across regions”.  “SiCrystal is a group company of ROHM, a leading company of SiC, and has been manufacturing SiC substrate wafers for many years. We are very pleased to extend this supply agreement with our longstanding customer ST. We will continue to support our partner to expand SiC business by ramping up 150mm SiC substrate wafer quantities continuously and by always providing reliable quality”. said Dr. Robert Eckstein, President and CEO of SiCrystal, a ROHM group company.  Energy-efficient SiC power semiconductors enable electrification in the automotive and industrial sectors in a more sustainable way. By facilitating more efficient energy generation, distribution and storage, SiC supports the transition to cleaner mobility solutions, lower emissions industrial processes and a greener energy future, as well as more reliable power supplies for resource-intensive infrastructure like data centers dedicated to AI applications.  About STMicroelectronics  At ST, we are over 50,000 creators and makers of semiconductor technologies mastering the semiconductor supply chain with state-of-the-art manufacturing facilities. An integrated device manufacturer, we work with more than 200,000 customers and thousands of partners to design and build products, solutions, and ecosystems that address their challenges and opportunities, and the need to support a more sustainable world. Our technologies enable smarter mobility, more efficient power and energy management, and the wide-scale deployment of cloud-connected autonomous things. We are committed to achieving our goal to become carbon neutral on scope 1 and 2 and partially scope 3 by 2027.  Further information can be found at www.st.com .  About ROHM  Founded in 1958, ROHM provides ICs and discrete semiconductor devices characterized by outstanding quality and reliability for a broad range of markets, including automotive, industrial equipment and consumer market via its global development and sales network.  In the analog power field, ROHM proposes the suitable solution for each application with power devices such as SiC and driver ICs to maximize their performance, and peripheral components such as transistors, diodes, and resistors.  Further information on ROHM can be found at www.rohm.com .  About SiCrystal  SiCrystal, a ROHM group company, is one of the global market leaders for monocrystalline silicon carbide wafers. SiCrystal’s advanced semiconductor substrates provide the basis for the highly efficient use of electrical energy in electric vehicles, fast charging stations, renewable energies and in various fields of industrial applications.  Further information on SiCrystal can be found at www.sicrystal.de .
Key word:
Release time:2024-04-24 11:10 reading:1388 Continue reading>>
Understanding Moisture Sensitive Levels (MSL) in Electronic Components
  Moisture Sensitive Levels (MSL) play a crucial role in the handling and reliability of electronic components, especially those that are sensitive to moisture-induced damage.  The MSL designation provides valuable information about the susceptibility of a component to moisture absorption and outlines guidelines for proper storage and handling.  In this article, we explore the significance of Moisture Sensitive Levels, the risks associated with moisture exposure, and best practices for mitigating potential issues.  The Impact of Moisture on Electronic Components  Moisture can have detrimental effects on the performance and reliability of electronic components, particularly those with moisture-sensitive materials like ceramics and certain plastics. When exposed to high humidity or moisture, these materials can absorb water, leading to various issues such as:  Popcorn Effect:  One common consequence of moisture absorption is the “popcorn effect,” where trapped moisture turns into steam during the solder reflow process. This can cause internal delamination, cracks, or even physical damage to the component.  Electrochemical Migration:  Moisture can facilitate the formation of conductive paths between metal traces, leading to electrochemical migration. This can cause short circuits and compromise the functionality of the component.  Reduced Electrical Performance:  Moisture absorption may alter the electrical properties of certain materials, affecting the overall performance and reliability of the electronic device.  Decreased Solderability:  Moisture-sensitive components may experience reduced solderability, making it challenging to achieve proper solder joints during assembly.  Moisture Sensitive Levels (MSL)Moisture Sensitive Levels are a classification system defined by the Joint Electron Device Engineering Council (JEDEC) to categorize electronic components based on their susceptibility to moisture damage. The MSL rating is represented by a numerical value, ranging from MSL 1 to MSL 6, with MSL 1 being the least sensitive and MSL 6 the most sensitive.  ● MSL 1:  Components with MSL 1 designation are considered the least sensitive to moisture. They have a long floor life and are less prone to moisture-related issues during assembly.  ● MSL 2-3:  Components classified as MSL 2 or MSL 3 have moderate sensitivity to moisture. They may require additional precautions during storage and handling to prevent moisture absorption.  ● MSL 4-5:  Components with MSL 4 or MSL 5 designations are highly sensitive to moisture. Strict guidelines, including vacuum-sealed packaging and rapid assembly, are necessary to minimize the risk of damage.  ● MSL 6:  MSL 6 represents the highest level of moisture sensitivity. Components in this category are extremely susceptible to moisture, and special precautions, such as baking before use, are essential.  Best Practices for Handling Moisture-Sensitive Components● Storage Conditions:  Store moisture-sensitive components in a controlled environment with low humidity levels. Use desiccant packs or dry storage cabinets to maintain dry conditions.  ● Monitoring Shelf Life:  Keep track of the shelf life of components with MSL ratings. Components should be used or baked before the expiration of their floor life.  ● Baking Before Use:  For components with higher MSL ratings, a pre-bake process may be necessary before assembly to remove absorbed moisture. Follow the manufacturer’s guidelines for baking conditions.  ● Vacuum-Sealed Packaging:  Use vacuum-sealed packaging for components with higher MSL ratings to prevent moisture ingress during storage.  ● Humidity Indicator Cards (HIC):  Employ Humidity Indicator Cards to visually monitor the humidity levels inside sealed packages. This helps assess the effectiveness of moisture protection measures.  ● Reflow Profile Considerations:  Adjust reflow profiles to minimize the exposure of moisture-sensitive components to high temperatures during soldering.  ● Training and Awareness:  Ensure that personnel involved in handling electronic components are trained on MSL classifications and proper handling procedures to prevent moisture-related issues.  Conclusion  Moisture Sensitive Levels are critical indicators that guide the handling and processing of electronic components in the manufacturing and assembly processes. Understanding the MSL rating of components allows for the implementation of effective moisture protection measures, ensuring the reliability and longevity of electronic devices. By following best practices in storage, handling, and assembly, manufacturers can mitigate the risks associated with moisture-induced damage and deliver high-quality products to the market.
Key word:
Release time:2024-03-26 15:28 reading:1011 Continue reading>>

Turn to

/ 10

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
model brand To snap up
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code