AI服务器等高性能IT设备应用,<span style='color:red'>村田</span>推荐这款小型化、大容量、耐高温的0402英寸MLCC
  株式会社村田制作所开始量产尺寸仅为0402英寸(1.0×0.5mm)且容值为47µF的多层陶瓷电容器(MLCC)。该规格的产品是本公司初款、也是产业内抢先面世的小型化、大容值MLCC(本公司调查截止至2025年7月9日)。由于可在高至105°C的高温环境下使用,因此,该电容器可置于芯片附近,特别适合数据中心(包括AI服务器)在内的各种高性能IT设备,以及其它多种民用设备。  点击图片,了解最高使用温度105°C、温度特性为X6S的GRM158C80E476ME01产品详情。  近年来,包括AI服务器在内的各种可应用于数据中心的高性能IT设备的部署速度不断加快。由于这些设备搭载了许多元器件,因此需要在有限的电路板上实现效率较高的元器件布放;所以对于电容器,除了需要满足小型化和大容量化的需求外,还需要满足能够在电路板或芯片发热导致的高温环境下稳定使用的高可靠性要求。  为了满足这些需求,村田通过开发专有的陶瓷介电层及内部电纤薄层化技术,开始量产业内抢先面世的尺寸仅为0402英寸而最大容值则可高至47µF的突破性MLCC产品:  相比于容值同为47µF的村田过往产品(0603英寸),本产品的实装面积减少了约60%。  此外,与尺寸同为0402英寸的村田过往产品(22µF)相比,本产品的容值提升约2.1倍。  更重要的是,由于可在最高105°C的高温环境下使用,因此可以将本产品置于芯片附近,有助于提升客户产品及设备的性能。  规格  主要特长  小型化0402英寸且电容值可达47µF的多层陶瓷电容器(MLCC)业内抢先实现量产  可在最高105°C的高温环境下使用,因此可以将该电容器置于芯片附近  可用于多种民用设备,如数据中心(包括AI服务器)在内的各种高性能IT设备  村田今后将继续推进多层陶瓷电容器的小型化、容量扩大及高温耐受性的提升,并致力于扩充产品组合来满足市场需求,并为电子设备的小型化、高性能化和多功能化做出贡献。
关键词:
发布时间:2025-07-23 13:03 阅读量:199 继续阅读>>
<span style='color:red'>村田</span>开始量产市面初款0402英寸47µF的多层陶瓷电容器
  株式会社村田制作所(以下简称「村田」)今日宣布:公司已开始量产业内抢先面世的(1)尺寸仅为0402英寸(1.0×0.5mm)且容值为47µF的多层陶瓷电容器(MLCC,以下简称「本产品」)。  (1)该信息为本公司调查所得,截止至2025年7月9日。  近年来,包括AI服务器在内的各种可应用于数据中心的高性能IT设备的部署速度不断加快。由于这些设备搭载了许多元器件,因此需要在有限的电路板上实现效率较高的元器件布放;所以对于电容器,除了需要满足小型化和大容量化的需求外,还需要满足能够在电路板或芯片发热导致的高温环境下稳定使用的高可靠性要求。  为了满足这些需求,村田通过开发专有的陶瓷介电层及内部电纤薄层化技术,开始量产业内抢先面世的尺寸仅为0402英寸而最大容值则可高至47µF的突破性MLCC产品。相比于容值同为47µF的村田过往产品(0603英寸),本产品的实装面积减少了约60%。此外,与尺寸同为0402英寸的村田过往产品(22µF)相比,本产品的容值提升约2.1倍。更重要的是,由于可在最高105°C的高温环境下使用,因此可以将本产品置于芯片附近,有助于提升客户产品及设备的性能。  村田今后将继续推进多层陶瓷电容器的小型化、容量扩大及高温耐受性的提升,并致力于扩充产品组合来满足市场需求,并为电子设备的小型化、高性能化和多功能化做出贡献。此外,通过电子部件的小型化,削减使用的材料,提升单位产品的生产效率,从而削减村田工厂的电力使用量,为减轻环境负担做出贡献。  主要特性  小型化0402英寸且电容值可达47µF的多层陶瓷电容器(MLCC)业内抢先实现量产  可在最高105°C的高温环境下使用,因此可以将该电容器置于芯片附近  可用于多种民用设备,如数据中心(包括AI服务器)在内的各种高性能IT设备  主要规格
关键词:
发布时间:2025-07-10 14:08 阅读量:358 继续阅读>>
<span style='color:red'>村田</span>发布首款搭载XBAR技术的商品化高频滤波器
  株式会社村田制作所(以下简称“村田”)宣布,正式发布村田首款(1)采用XBAR技术(2)的高频滤波器,并已开始量产。该产品结合了Resonant公司(村田已于2022年收购Resonant公司)的XBAR技术与村田专有的滤波器技术(SAW)。在3GHz以上的高频频段中,该产品能够以较低的损耗检测到所需信号,同时消除来自相邻频段(3)的干扰信号,主要应用于带有无线通信功能的各种设备,如智能电话、穿戴电子、笔记本电脑和网关等。  注释  (1)数据基于村田调研结果,截至2025年7月7日。  (2)XBAR技术: 该技术是村田在滤波器领域的专有技术,它利用梳状电极和压电单晶薄膜来激发体声波。  (3)相邻频段:没有被特定通信无线标准采用的频段。  近年来,随着5G和6G等移动通信系统的持续发展,以及Wi-Fi 6E和Wi-Fi 7等无线局域网标准的推出,市场对超高速和高容量通信的需求迅速增长。这些通信技术使用了3GHz以上的高频频段,通常依赖低温共烧陶瓷(LTCC)滤波器或体声波(BAW)滤波器提取所需的信号。然而,LTCC滤波器和传统的BAW滤波器在高频频段应用中一直面临着一些挑战,例如在衰减不足的情况下,容易导致相邻频段的无用信号无法被有效过滤,进而产生噪声。  村田此次推出的产品结合了Resonant公司的XBAR技术和村田的专有技术,即使在3GHz以上的频段也依旧具备高衰减能力,从而有效地遏制了噪声的产生。同时,它还支持高频通信的关键需求——低损耗和高带宽,为实现高速、高容量和高质量的无线通信提供了有力支持。  XBAR技术还能够在10GHz以上的超高频频段中实现高衰减、低损耗和大带宽,而这些频段正是6G通信的目标频段。村田将继续开发可满足市场需求的高频滤波器元件,从而为推动高性能、多功能无线通信技术的发展做出贡献。  主要特性  -市面上首款(1)采用XBAR技术的高频滤波器产品  -在3GHz以上的频段中实现了低插损、高衰减和高带宽  -结合村田特有的声表面波滤波器(SAW)技术,兼具高性能和高性价比  主要规格
关键词:
发布时间:2025-07-10 13:19 阅读量:298 继续阅读>>
<span style='color:red'>村田</span>“超声波透射超材料”,有哪些应用场景
  每年定期进行健康检查的人很多,但是,很少有人定期检查大脑,因为可以直接观察大脑的CT扫描和核磁共振成像(MRI)是大型且昂贵的装置,需要医学以外的高水平专业知识才能安全地使用它们。因此,目前只有在大型医疗机构才能接受这样的检查。  村田制作所开发了一种新技术,有可能通过用于了解子宫内胎儿状态的超声波回波检查来检查头骨内的大脑状态。通过将这种名为“超声波透射超材料”的特别结构薄片贴在头皮表面,有可能透过头骨传输超声波。如果能够实现这一点,更多的医疗机构就能简便地进行脑部检查了。  村田在“CEATEC 2023”上展示了这种超声波透射超材料(上图)。这项技术的应用领域将不仅仅限于医疗,有可能在汽车智能化、社会基础设施的维护管理等多种领域推动超声波应用的扩大。这里,我们简单介绍一下“超声波透射超材料”的原理以及其应用可能性。  实现什么功能?  超声波的频率(20kHz或更高)高于人耳能听到的频率,普遍应用于从工业设备、医疗设备到家用电器等各个领域。一般大众熟悉的应用如辅助汽车自动泊车的超声波传感器、探鱼器、清洗眼镜的超声波清洗机、超声波加湿器等。如果将其用作传感介质,则即使是位于暗处的透明固体和液体等小物体以及电波反射率较低的物质也能对其进行检测,这个原理已经应用在医疗、微电子等领域的无损检查。  超声波可用于多种用途,但缺点是无法穿过金属或树脂等制成的墙壁等障碍物,这限制了它的应用范围。这是因为超声波具有一种性质:它在碰到与传输介质(在大气中即为空气)之间的声阻抗差较大的物质时,大部分会发生反射,几乎都不会穿透。  这里所说的声阻抗是指声音传播难易程度的指标,声阻抗在分子稀疏地分散的空气中的值较小,而在金属和树脂等高密度物质中的值较大,因此,超声波在空气和墙壁的分界处将不再透射。  超声波透射超材料是一种实现了让超声波穿过墙壁等障碍物的功能的材料。之所以在这里被称为“超材料”,因为这是一种人工开发的物质,它在电磁波和声波等波传播时,拥有实现自然界中无法看到的方式的功能。  村田制作所开发的超声波透射超材料(上图)通过使用弹簧摆结构在成为阻挡物的物质上创建共振机制,缓和声阻抗的差异,并提高超声波透射率。  采用什么原理?  村田开发的超声波透射超材料在片材上制作了将由配重部分和弹簧部分构成的“极小单元格”周期性排列的结构。而且,通过调整配重部分和弹簧部分的形状和尺寸,将单元格设计成与根据超声波入射而移动的弹簧摆具有相同的作用。通过让其与入射超声波在垂直方向上产生共振,穿过声阻抗有较大差异的阻挡物,从而高效地传播超声波。  在试制品中,村田使用3D打印机在1mm厚的不锈钢板上形成极小的单元格。将其浸入水中,从发射器发射500kHz的超声波,不锈钢板另一侧的接收器成功地接收到了透射率为60%的超声波(下图)。  不锈钢板并不是唯一可以使用该技术让超声波透射的材料。如果根据障碍物与传播介质之间的声阻抗差异来设计单元格,则可以将该技术应用于多种物质。  有哪些可能的应用场景?  村田希望能将已开发的技术应用于社会的业务中,通过进一步的技术开发,完善超声波透射超材料,并提供能够发挥所需效果的解决方案。目前关注的应用前景有以下三个:  医疗领域  村田设想将超声波透射超材料作为医疗领域的检查材料。  在医疗领域,超声波回波被作为可以获得X射线、CT和MRI无法获得的重要信息的检查方法使用。  能在视频中观看体内患处的运动是只有超声波回波才具备的特长。  此外,它还与CT等使用X射线进行的检查不同,不存在遭受辐射的担心。  超声波回声有很多优点,但由于超声波不能穿透骨骼,所以无法检查骨骼内部的脏器和器官的状态。因此,超声波回波无法用于检查被头骨覆盖的大脑。如果应用超声波透射超材料,也许就可以使用超声波回波对大脑进行检查。我们希望即使是小型医疗机构也能够简便地进行详细检查,同时将患者的负担控制在尽可能小的限度。  车载应用  超声波透射超材料有望在不影响汽车设计性的情况下设置超声波传感器,比如让用于汽车泊车辅助等的超声波传感器不暴露到车体外面。  迄今为止,汽车用的超声波传感器需要安装在车体表面。这是因为如果用盖罩盖住,超声波就无法穿透。怎样能在不影响汽车设计性的情况下设置超声波传感器?  可以肯定的是,在不久的将来,为了实现无人驾驶,车辆的各个地方都会设置各式各样的传感器。有许多消费者将汽车视为观赏对象,认为有很多粗陋的传感器裸露在外面可能会降低汽车作为商品的价值。此外,将传感器暴露在车体外部可能会降低耐用性。因此,需要一种能够在不影响美观和可靠性的情况下安装超声波传感器的技术。如果使用超声波透射超材料,即可以将超声波传感器嵌入到保险杠内部。  非接触方式水下检查  以非接触方式对水下电缆护套内部进行检查,是超声波透射超材料可能的另一个应用场景。  远距离通信和海上风力发电等的水下电缆需要维护管理。为了使水下电缆稳定工作,在维护管理时不仅需要定期检查电缆的外部,还要定期检查电缆的内部。但是,以前的实际情况是没有办法调查被覆盖的电缆内部情况。  如果在水下电缆的护罩中添加超声波透射超材料,则可以通过安装在水下无人机上的超声波传感器或从船上投放传感器来以非接触方式对电缆内部进行检查。由此可以减轻海洋和河流等当中的水下对象物体的检查作业负担。  总 结  以上介绍的三个例子只是村田目前正在设想的部分应用案例。超声波透射超材料特别的技术特性将扩大超声波的利用场景。除了传感器之外,我们开发的技术在将超声波用于加工和清洗等的用途中也可能会产生适用价值。
关键词:
发布时间:2025-07-09 13:28 阅读量:267 继续阅读>>
针对高性能无人机及机器人应用,<span style='color:red'>村田</span>3D‐MEMS 6轴惯性传感器再推新品!
  村田制作所推出SCH16T系列6轴惯性测量单元(IMU)的最新成员——SCH16T-K10。基于2024年1月发布的SCH16T-K01的成功,这款新型传感器版本显著提升了陀螺仪性能,动态范围较SCH16T-K01提升了十倍。该传感器专为无人机飞行控制器等高要求应用设计,可在严苛环境中提供无与伦比的性能。本产品已开始批量生产。  SCH16T-K10配备2000度每秒(dps)的陀螺仪测量范围和16g加速度计测量范围。这些规格确保在动态条件下测量值始终准确且不饱和,使其成为无人机导航及其他高性能机器人应用的理想选择。该传感器的市场领先振动校正能力可在振动环境中实现精准测量,而其机械鲁棒性确保在高冲击环境下仍具备卓越耐用性。  村田制作所的专有 3D MEMS 工艺使我们能够制造出低噪声、高稳定性的电容式传感器——这是村田制作所在市场中领先性能的关键因素。此外,集成先进的 ASIC 用于传感和控制,确保了 MEMS 元件的可靠性和精度。  SCH16T 系列在竞争激烈的市场中脱颖而出,其机械韧性和抗振性能均优于其他 MEMS 传感器。与SCH16T-K01类似,SCH16T-K10凭借其卓越的陀螺仪噪声特性和测量范围内的艾伦偏差,树立了新的行业标准。  对于在恶劣环境中需要超过1000 dps陀螺仪测量范围的IMU的行业,SCH16T-K10是非常合适的选择,它将先进的技术与村田对质量和精密工程的承诺相结合。  规格  主要特长  与村田传统机型6轴传感器 SCH16T-K01比较,大幅扩大了测量范围:  角速度:测量范围 ±2,000dps  角速度:动态范围 ±5,242dps(与SCH16T-K01比较可确保10倍以上)  加速度:测量范围 ±16g  MEMS陀螺仪,实现了行业高水平的传感器性能:  角度随机游走:0.26 deg/√h (-40°C~ +110°C)  噪声密度:0.006dps/√h (-40°C~ +110°C)  噪声RMS:0.02dps (-40°C~+110°C @13Hz LPF)  村田将继续致力于开发满足市场需求的惯性传感器。点击以下链接,了解更多村田制作所近来推出的六轴惯性传感器新品信息:  高精度汽车用六轴惯性传感器:1颗传感器,可同时用于车辆自身位置推算、车辆姿态测量和前照灯调平。  村田小型6轴惯性传感器SCH16T-K01:高水平精度检测姿态角和自身位置,主要用于工业设备用途。
关键词:
发布时间:2025-07-09 13:24 阅读量:529 继续阅读>>
<span style='color:red'>村田</span>量产首款热电分离NTC热敏电阻,有效提升汽车热反馈性能
  株式会社村田制作所已将功率半导体用NTC热敏电阻“FTI系列”商品化。本产品是村田首款(基于村田公司的调查结果,截至2025年4月)采用树脂模塑结构、且支持引线键合的NTC热敏电阻。  由于支持引线键合贴装技术,可用细金属线连接半导体芯片和电极。通过将该产品设置在功率半导体附近,可以准确测量其温度。  本产品工作温度确保范围为-55°C至175°C,适合用于产生大量热量的汽车动力总成用途——比如汽车逆变器、DC-DC转换器、车载充电器等将动力源产生的动力传输至车轮以使车辆行驶的系统。  近年来,随着汽车的电子化和高功能化程度不断提高,高输出、效率高的功率半导体的重要性进一步增加。另一方面,功率半导体会产生大量热量,高温造成的损坏风险已成为需要解决的问题。对此,人们采用了设置检测功率半导体的温度上升的热敏电阻并进行冷却或限制工作的方法。  但是,由于半导体的贴装焊盘上施加了高电压,以前的热敏电阻无法承受这种电压,因此只能将它们设置在远离半导体的位置。由此使准确检测半导体的温度变得很困难,并且需要采取措施将其限制在低于实际耐热温度的温度下工作,以预防因高温而导致半导体损坏。结果导致半导体的性能无法得到充分发挥。  本公司此次开发了村田首款具有树脂模塑结构并支持引线键合的本产品。树脂模塑结构确保绝缘并允许直接放置在功率半导体的焊盘上。此外,由于它支持引线键合,因此能连接到热敏电阻焊盘。由此实现了在功率半导体附近进行准确的温度检测,并能充分利用其性能。  工作温度确保范围为-55°C至175°C,实现了在较大的温度范围内稳定工作。本产品可以在确保安全性的同时充分发挥性能,因此即使减少功率半导体的数量,也可以维持与以前同等的性能,对减少贴装面积和成本也有帮助。支持引线键合的示意图  规格  主要特长  村田首款树脂模塑结构且支持引线键合  通过将树脂模塑结构与支持引线键合组合使热敏电阻可以与功率半导体放置在同一焊盘上,从而实现对功率半导体进行准确的温度检测。  确保能在175°C的温度下工作  采用与外部电极之间的高可靠性接合技术,确保稳定工作的温度范围大,实现在高温环境下稳定工作。工作温度范围为-55℃到175℃,达到了行业超高水平。  为了满足多样化的市场需求,本公司今后将继续致力于扩大热敏电阻的电阻值阵容,并开发除支持以前的焊接贴装外还支持银烧结贴装的热敏电阻。通过这些努力为电动汽车等半导体应用的高功能化做贡献。
关键词:
发布时间:2025-07-07 14:39 阅读量:366 继续阅读>>
<span style='color:red'>村田</span>转让微型一次电池业务
  株式会社村田制作所根据2025年6月16日董事会决议,向麦克赛尔株式会社(Maxell, Ltd.)转让村田制作所及其全资子公司株式会社东北村田制作所(Tohoku Murata Manufacturing Co., Ltd.)经营的微型一次电池业务。本次转让将于2025年度内完成。  本次业务调整后,村田制作所及东北村田制作所(Tohoku Murata)将向圆柱形锂离子二次电池倾注更多的经营资源,从而以电动工具及ESS(Energy Storage System,储能系统)市场为主轴提升竞争优势,争取进一步拓展业务。  本次业务调整涉及的微型一次电池产品包括纽扣型二氧化锰锂电池、氧化银电池和碱性纽扣电池。村田制作所于2017年接收索尼株式会社(Sony Corporation)转让的电池业务(含微型一次电池),并进行业务的展开。村田制作所认为,微型一次电池业务由杰出经营者麦克赛尔(Maxell)继承是理想的选择,因此决定进行业务转让。  本次业务转让方案是村田制作所及东北村田制作所作(Tohoku Murata)为分拆公司,通过业务分拆(合并分拆)让村田制作所新成立的全资子公司继承该业务。其后,麦克赛尔(Maxell)将取得村田制作所新子公司的100%股份,以此进行该业务的转让。  麦克赛尔株式会社(Maxell, Ltd.)的主要业务内容为电池、功能性部件材料、光学元件、设备、电气机械器具的制造及销售。成立于1960年9月,资本金122亿日元,合并后的公司员工为3797人(截至2025年3月31日)。
关键词:
发布时间:2025-07-07 14:36 阅读量:405 继续阅读>>
<span style='color:red'>村田</span>:高功率谐振电路中,MLCC的选择标准和注意事项
  本文介绍适用于汽车OBC、无线电力传输和服务器中的谐振电路的高压低损耗多层陶瓷电容器(MLCC),详细阐述近年来在高功率LC和LLC谐振电路中使用这些电容器的特性和选择标准。  1.高功率电源系统市场趋势  近年来,在高功率电源系统中,谐振电路的应用越来越多。  LLC谐振电路大范围用于100W及以上的高效率电源中,例如EV和PHV(电动汽车和插电式混合动力汽车)的车载OBC、服务器电源和用于大型设备的电源中,采用率预计超过90%。  此外,在无线功率传输(WPT)中,LC谐振电路用于传输和接收大量电力。配备WPT的产品不仅用于智能手机和平板电脑等小型设备,还用于汽车和制造过程中的运输机器人等大型产品中。  高功率电源系统中谐振电路越来越普遍,需要用到容量更大、损耗更低的谐振电容器。  虽然多种类型的谐振电路(如LC和LLC谐振电路)变得越来越普遍,但处理大量功率的谐振电容器(谐振电路中使用的电容器)需要具有10nF或更大的稳定电容和低损耗性能。  过去,薄膜电容器是唯一可用的选择,如今多层陶瓷电容器因其多样化的优点而成为主流。尤其对于需要高功率密度的谐振电路来说,多层陶瓷器是其首选。  这篇技术文章中,我们解释使用多层陶瓷电容作为谐振电容器的好处,并介绍其特性、使用时的注意事项、选择时的考虑因素和村田产品阵容。  2.大功率谐振电路中的谐振电容器  这里,我们分三种情况来讨论。  2.1 高电压谐振电路  在处理高电流的产品(如车载WPT)中使用的谐振电路中,施加到电容器的电压V(p-p)可能非常高,范围从数百伏(p-p)到1万伏(p-p),在某些情况下可达1万伏(p-p)。由于多层陶瓷电容器的额定电压为630Vdc或1000Vdc,因此需要串联电容器以确保在高电压下工作时,使该V(p-p)保持在额定电压范围内。  由于电容器串联时组合电容会减小,因此须通过并联来确保所需的电容。  因此,谐振电容器越来越多地用于多串联和多并联连接,并且需要具有更小安装面积的产品。  2.2高谐振频率的谐振电路  在汽车市场,根据国际标准,汽车WPT的谐振频率固定为85kHz,但用于EV和PHV OBC,谐振频率因制造商而异,范围从60kHz到400kHz。在这些应用中,高频高压被施加到电容器上,容易增加其自热。  因此,谐振电容器需要具有更低的损耗,并抑制长期使用过程中自发热的增加。  2. 3MLCC .vs. 薄膜电容器  与薄膜电容器相比,多层陶瓷电容器具有更高的最高工作温度和更低的发热,因此具有优异的长期可靠性。  此外,对于具有相同电容的产品,它们的特点是体积更小,ESL更低。  由于这些特点,多层陶瓷电容器在大功率谐振电路中被大范围用作谐振电容器。  多层陶瓷电容器的特性  安装面积(体积)小  低发热(低ESR)  低ESL  出色的长期可靠性  最高工作温度高  3. 中高压、低损耗MLCC方案  如上所述,高功率谐振电路(如汽车用WPT和电动汽车和PHV用OBC)需要具有低损耗和不易产生自热的谐振电容器。为了满足对谐振电容器的需求,Murata提供了一系列额定电压为630Vdc和1000Vdc且使用低损耗材料的中高压多层陶瓷电容器。  产品分为两种类型:标准型片式和带金属端子型片式陶瓷电容(见上表)。  金属端子类型可以通过连接金属端子将大型芯片(5750M 尺寸)堆叠成两层,这不仅减少了安装面积,还有助于降低汽车市场中令人担忧的“焊料开裂”风险。由于电容器串联时组合电容会减小,因此须通过并联来确保所需的电容。  内置谐振电路的车载OBC、服务器电源和大型设施电源等大型产品由于使用时间长,因此需要电容器的长期可靠性。对于这些多层陶瓷电容器,在连续使用的情况下,目标寿命为10年。  4. 选择谐振电容器要注意什么?  包括上述介绍的产品在内,在选择谐振电路中使用的电容器(谐振电容器)时,需要注意一些事项。在大功率应用中,谐振电容器的选择不正确可能导致设备冒烟或起火。这也适用于多层陶瓷电容器,它们具备低发热量和长期可靠性;因此,必须在充分考虑其特性后进行选择。  我们将解释两个我们认为特别重要的项目:“电容器的自加热”和“电压偏离曲线”。  4.1自热限制  在高功率应用中使用的谐振电容器在施加电压后立即产生初始热量后,自发热增加。即使在多层陶瓷电容器中,自发热的增加也是不可避免的,但在目标使用寿命(例如10年)内,应避免电压和频率条件超过125°C的最高工作温度(下图)。  电容器表面温度的变化  Murata的多层陶瓷电容器将允许电压Vdc定义为电容器表面温度在其目标寿命期间达到最高工作温度125°C的电压。在选择电容器时,施加的电压V(p-p)必须保持在该允许电压内。  对于每个项目,我们设置了根据频率显示允许电压的“电压偏离曲线”(见下图),并在网站上的产品规格和规格表中提供了详细说明。  基于自加热评估的允许电压曲线设置  4.1 允许电压的限制  这里是我们对允许电压和频率之间关系的看法。上图所示的“电压折损曲线”概括了为每个项目设置的允许电压图,根据频率范围可分为三个区域。  区域1:  频率范围―低于几十kHz:受额定电压限制。  由于几个10kHz或更低的低频,电容器的自加热是最小的,额定电压成为允许电压。然而,为中、高压低损耗设计的多层陶瓷电容器在该低频范围内作为谐振电容器使用的情况很少见。  区域2:  频率范围―几十kHz到几百kHz:由于连续温度升高受到限制。  施加电压后的立即自热在ΔT20度以内,但由于施加几十kHz~几百kHz的高电压,该区域的自热增加。无论是低损耗还是高介电常数片式电容器,我们都要求工作条件确保电容器的自加热保持在20度ΔT内。  在该区域,允许电压定义为电容器表面温度达到最高工作温度125°C之前的目标寿命(在这里介绍的产品中,目标寿命为10年)的电压。使用中高压、低损耗多层陶瓷电容器作为谐振电容器的情况大多属于这一区域。  区域3:  频率范围―几百kHz或更高:由于施加电压后立即产生初始热量而受到限制。  当频率进一步增加时,施加电压后电容器的自发热会立即超过ΔT20度。如前所述,我们要求,无论低损耗或高介电常数贴片电容器,工作条件都应确保电容器的自加热保持在ΔT20度以内。即使在中、高压低损耗多层陶瓷电容器中,允许电压定义也是自加热达到20度ΔT的电压。因此,应选择温度低于此阈值的产品。  5.谐振电路MLCC选型工具  如上所述,选择谐振电容器需要考虑多种特性,这增加了元件选择的难度。这可能是使快速增长领域的技术进步复杂化的一个因素,例如汽车OBC、服务器电源和大型设备电源。特别需要强调以下两点:  由于施加的电压有升高的趋势,经常会使用多个串联和并联连接,因此需要计算等效电容。  有必要将单个电容器的施加电压V(p-p)保持在“额定电压”以下。  村田制作所开发了一款名为“SimSurfing”的工具,该工具支持根据客户的使用环境选择最佳谐振电容器。只需输入谐振电容器的工作电压、温度和所需静电容量,该工具就能显示最佳产品以及推荐的串联和并联连接数。该工具有助于减轻客户在零件选择和设计过程中的负担。
关键词:
发布时间:2025-07-02 15:57 阅读量:318 继续阅读>>
<span style='color:red'>村田</span>首款10µF/50V/0805英寸车规级MLCC正式量产
  株式会社村田制作所(以下简称“村田”)宣布,已开发并开始量产面向车载市场的首款(1)0805英寸(2.0×1.25mm)尺寸、额定电压50Vdc、电容值10µF的多层片式陶瓷电容器(MLCC),产品型号为GCM21BE71H106KE02。  注:(1)数据由村田统计,截至2025年6月25日。  随着自动驾驶技术不断进步,车载系统数量日益增加,对高性能与小型化元件的需求也显著提升。为保障自动驾驶(AD)和高级驾驶辅助系统(ADAS)等关键模块的稳定运行,IC周边对大容量电容器的需求持续上升,进而加剧了电路板空间的紧张。  为应对这一挑战,村田运用其自主开发的陶瓷材料与薄膜技术,开发出本款车规级新产品。相比村田传统10µF/50Vdc/1206尺寸MLCC,该产品在保持相同性能的同时,将尺寸缩小至0805,占板面积减少约53%,有效实现小型化。与此同时,相比同为0805尺寸、50Vdc额定电压、电容值为4.7µF的传统产品,该产品的电容值提升约2.1倍,实现了大容量化。  此外,该产品适用于12V车载标准电源线路,有助于节省电路板空间并减少电容器数量。  村田将持续推进MLCC的小型化与大容量化,丰富车用产品阵容,满足未来汽车电子在高性能化与多功能化方面的需求。同时,村田也将通过元件尺寸微型化、材料用量减少及提升单位产出效率、降低工厂用电等手段,推动节能减排、降低碳足迹,积极履行环保责任。  主要特点  1. 村田首款实现0805英寸尺寸下10µF/50Vdc的车规级多层片式陶瓷电容器(MLCC)产品  2. 与同容值、同额定电压的传统产品相比,占板面积减少了约53%  3. 与同尺寸、同额定电压的传统产品相比,电容值提升约2.1倍  4. 可安装于12V车载标准电源线,助力电路板空间优化和电容器数量精简  主要规格
关键词:
发布时间:2025-06-30 15:33 阅读量:288 继续阅读>>
<span style='color:red'>村田</span>推出首款支持引线键合的功率半导体用树脂模塑结构NTC热敏电阻,成功实现商品化
  株式会社村田制作所(以下简称“村田”)宣布,将功率半导体用NTC热敏电阻“FTI系列”商品化。该系列产品是村田首款※1采用树脂模塑结构且支持引线键合※2的NTC热敏电阻,通过设置在功率半导体附近,可以准确测量其温度。此外,其工作温度确保范围高达-55°C至175°C,适合用于产生大量热量的汽车动力总成用途※3。  ※1 根据村田内部调查,截至2025年4月。  ※2 引线键合是一种通过细金属线将半导体芯片与电极连接的封装技术。  ※3 包括逆变器、DC-DC转换器和车载充电器等将动力源产生的动力传输至车轮以使车辆行驶的系统。  近年来,随着汽车电子化和高性能化不断加速,高输出、高效率的功率半导体需求日益增长。然而,由于其工作时产生大量热量,过热导致器件损坏的风险成为一大技术挑战。为此,行业普遍采用在功率半导体附近配置热敏电阻以实时监测温度,并通过冷却系统或功率限制来保障安全运行。  然而,传统热敏电阻难以承受半导体焊盘上的高电压,无法直接贴装,通常需设置于较远位置,从而影响温度测量的准确性。这不仅降低了热管理的响应效率,还限制了功率半导体的性能发挥。  为了解决上述难题,村田开发了本款全新NTC热敏电阻产品。其采用树脂模塑结构,具备优异的绝缘性,可直接贴装于功率半导体焊盘上。同时,支持引线键合的设计,使其能够与焊盘实现高可靠连接,从而实现对半导体器件的精确温度监控。其-55°C至+175°C的宽广工作温度范围,也达到了行业领先水平,可在高温环境中实现稳定运行。  此外,该产品有助于减少功率半导体使用数量,在确保系统安全性的前提下,进一步降低贴装面积与系统成本,提升整体系统的设计灵活性。  为响应日益多元化的市场需求,村田未来将进一步丰富FTI系列热敏电阻的电阻值阵容,并推进支持银烧结贴装等多种安装方式的产品开发,持续为电动汽车等高集成半导体系统的技术升级提供支持。  产品特点  1. 村田首款支持引线键合的树脂模塑结构热敏电阻 可直接与功率半导体共用焊盘,精准测量其温度,提升温控效率。  2. 支持最高175°C的工作温度,稳定性卓越 采用高可靠性电极连接技术,工作温度范围宽广,性能稳定,适应严苛使用环境。  (产品顶面、底面照片)  (支持引线键合的示意图)  产品规格
关键词:
发布时间:2025-06-26 14:15 阅读量:311 继续阅读>>

跳转至

/ 21

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码