中国芯片制造产业发展难点在哪

发布时间:2022-04-14 15:10
作者:Ameya360
来源:网络
阅读量:3759

  2021年,我国GDP规模达到114.4万亿元,一年内GDP增加13万亿元,这在中华民族历史上是第一次。2022年是进入全面建设社会主义现代化国家、向第二个百年奋斗目标进军新征程的重要一年。如何走好新的“赶考路”举世瞩目。

  在这条新的“赶考路”上,我国的发展经受着来自外部的压力。压力之下,维护技术主权的重要性也是不言而喻的。在此当中半导体产业的自主研发能力及生产的能力更是决定了中国信息技术主权发展的重要因素。

  中国芯片制造产业发展难点在哪

  半导体主要由四个部分组成:集成电路(IC: integrated circuit),光电器件,分立器件,传感器,由于集成电路又占了器件80%以上的份额,因此通常将半导体和集成电路等价。集成电路按照产品种类有主要分为四大类:微处理器,存储器,逻辑器件,模拟器件,这些我们又称它们为“芯片”。

  半导体产业是支撑国家经济社会发展的战略性、基础性、先导性产业,也是我国当前需要重点突破的领域。它不仅支撑了庞大的生态,它的边界也在不断被延伸。从简单的计算与控制、数据、智能到感知与信号转换、能量变换再到AI、云计算、大数据、物联网、数字经济、信息安全等,它们无一例外地以芯片为基础。可以说半导体制造技术发展到位,我国科技领域才不会受制于人。

  半导体制造业的发展壮大为什么那么难呢?我们从全局的角度简要了解下半导体制造工艺及面临的技术难点。

  各种半导体产品

  首先我们以汽车为例,介绍半导体技术所涉及的领域。从F-1赛车到大型拖车,应用目的不同,种类也多种多样。半导体产品同样根据衬底材料和应用的不同,来进行各种分类。其分类如图1所示。

  中国芯片制造产业发展难点在哪

  图1半导体的主要分类 (按材料和产品分类)

  材料以单元素类材料和化合物类材料为主。硅半导体当然是单元素类,另外,化合物类材料主要用于按产品分类的光器件等。

  说说半导体工艺

  在半导体产业中,制造工程被称为工艺 (Process),理由是什么?虽然没有明确的答案,但很多人认为,与其说加工尺寸微小 (目前是nm制程。1nm=10-9m), 不如说制造过程无法用肉眼看到所致。例如像电视机和汽车这样的组装工程,因为是肉眼可见的,所以不能把制造工程称为工艺。此外,半导体产品还有一个特点,即不是一个一个生产, 而是批量生产,之后进行分割。因此,在半导体中,可能比较适合使用具有相对抽象含义的术语 “工艺” (Process)。

  半导体工艺包含前段制程和后段制程。这里的前段制程主要是对硅晶圆进行加工,所以也被称为晶圆工艺 ( Wafer Process)。主要的6个工艺会反复多次进行, 称之为“循环型工艺”。化学工业常被称为 “工艺产业”,也是因为化学产品要经过热分解、聚合、蒸馏等工艺,故而得名。而且同样也是先大量生产,之后进行分装。与此相对应,后段制程包括封装工序,因此称之为从上游到下游的 “Flow型工艺”。

  前段制程可以进一步分类为前端 (Front-End)和后端( Back-End)。前者主要是形成晶体管等元件, 而后者主要是形成布线。而且加工尺寸非常小, 只有几十nm(纳米),因此,硅晶圆的洁净度要求变得更加严格,而且对生产设备和晶圆厂(fab)的洁净度也有很高的要求,生产设备的价格也会更加昂贵,晶圆厂建设的投资额也会更加庞大。

中国芯片制造产业发展难点在哪

  图2半导体工艺的特点

  以上内容归纳在图2中,希望您牢记这张图。

  另外,还要提到的是,本文所涉及的半导体工艺是在硅晶圆的表面 ( Mirror,镜面)上进行工艺加工,而不是在硅晶圆的背面(Sand Blast, 磨砂面)上进行工艺处理。突然冒出镜面和磨砂面两个词,可能让不熟悉晶圆的读者略感困惑,为此,下面对硅晶圆进行介绍。

  硅晶圆是将单晶硅的硅锭用钢丝锯切成圆盘状。逻辑和存储器LSI都是只在晶圆表面上制作的,所以晶圆表面要做镜面抛光处理。如图2所示,因为像镜子一样光亮,所以叫作镜面。而另一面仅进行粗糙的研磨,不像镜子那样光亮,故而称为磨砂面。

  在制作成芯片时,如图1.2所示, 通过后段制程中的工艺使晶圆变薄。

  半导体制造面临的难点

  半导体制造主要面临的难点,可总结为以下7点。

  1. 材料纯度极高

  所用晶圆纯度高达“11个9”,即99.999999999%,洁净度也比手术室的要求严格100倍。

  2. 复杂度极大

  集成了数百亿的晶体管,复杂程度可想而知。

  3. 制程尺寸极小

  晶体管的尺寸已经来到5nm的水平。

  4. 设备极复杂

  半导体对于精度和功能的要求很高,导致简单的工艺能很难满足高精尖的需求。所以需要很多复杂的设备参与生产,比如光刻机。光刻机的光源和光学反射系统都是相当复杂的系统。

  5. 投资成本极大

  建造一座10nm以下,并拥有产能10万片晶圆/月的晶圆厂需要百亿美元的规模。不光是设备,相关工艺研发也是同等数量级的。

  6. 工作流程极长

  设备繁多,多以串行处理贯穿制造始终,工作流程的设计、实行、监控要求很高。

  7. 分工极细,融合极其紧密

  从设计,EDA(电子设计自动化),设备和材料的相互融合,都是各大企业以数十年的行业基础推动而成的,使得后来者很难居上甚至介入。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
工信部:加快突破训练芯片、异构算力等关键技术!
  1月21日上午10时,国务院新闻办公室举行新闻发布会,请工业和信息化部副部长张云明介绍2025年工业和信息化发展成效以及下一步部署。  他表示,国内企业发布多款人工智能芯片产品,智能算力规模达1590EFLOPS,行业高质量数据集加速涌现,国内大模型引领全球开源生态。据有关机构测算,2025年我国人工智能企业数量超过6000家,核心产业规模预计突破1.2万亿元。目前,人工智能已渗透领航工厂70%以上的业务场景,沉淀了超6000个垂直领域模型,带动1700多项关键智能制造装备与工业软件规模化应用,形成一批具备感知、决策和执行能力的工业智能体,推动智能制造从“自动化”向“自主化”演进。  近期,工信部联合7部门出台《“人工智能+制造”专项行动实施意见》,并配套制定了行业转型指引和企业应用指南。下一步,我们将以落实《实施意见》为抓手,加快推动人工智能产业高质量发展。抓好技术创新,加快突破训练芯片、异构算力等关键技术。抓好融合应用,聚焦软件编程、新材料研发、医药研发、信息通信等行业领域,体系化推动大小模型、智能体实现突破。抓好企业培育,激发涌现更多赋能应用服务商。抓好生态建设,加快制定行业急需标准,健全人工智能开源机制。抓好安全治理,强化算法安全防护、训练数据保护等攻关应用,提升企业伦理风险防范能力。
2026-01-26 17:52 阅读量:333
复旦大学研发出“纤维芯片”,攻克柔性电子核心瓶颈!
  据科技日报报道,智能设备的“柔性化”始终卡在一个关键瓶颈:作为“大脑”的芯片,长久以来都是硬质的。复旦大学彭慧胜/陈培宁团队成功在弹性高分子纤维内部,构建出大规模集成电路,研发出全新的“纤维芯片”,为解决“柔性化”难题提供了新的有效路径。这项成果于1月22日发表在国际期刊《自然》上。图为成卷的“纤维芯片”。复旦大学供图  传统芯片的制造,主要是在平整稳定的硅片上构建高密度集成电路。而复旦团队的思路是“重构形态”——他们提出“多层旋叠架构”。“这好比把一张画满精密电路的平面图纸,螺旋式地嵌入一根细线中。”论文第一作者、博士生王臻如此比喻。该设计使纤维内部的空间得到极致利用,实现了一维受限尺寸内的高密度集成。“纤维芯片”虚拟现实应用示意图和实物图。复旦大学供图  然而,在柔软、易变形的纤维中制造高精度电路,难度无异于在“软泥地”里盖高楼。为此,团队开发了与目前光刻工艺有效兼容的制备路线。他们首先采用等离子体刻蚀技术,将弹性高分子表面“打磨”至低于1纳米的粗糙度,有效满足商业光刻要求。随后,在弹性高分子表面沉积一层致密的聚对二甲苯膜层,为电路披上一层“柔性铠甲”。这层保护膜不仅可以有效抵御光刻中所用极性溶剂对弹性基底的侵蚀,还能缓冲电路层受到的应变,确保纤维芯片在反复弯折、拉伸变形后,电路层结构和性能依然稳定。  相关制备方法可与目前成熟的芯片制造工艺有效兼容,为其从实验室走向规模化制备和应用奠定了坚实基础。  该成果有望为纤维电子系统的集成提供新的路径,有望实现从“嵌入”到“织入”的转变,助力脑机接口、电子织物、虚拟现实等新兴领域的变革发展。
2026-01-22 16:38 阅读量:353
二十年困局被破解!西电团队攻克芯片散热难题
  近日,西安电子科技大学郝跃院士团队在半导体材料领域取得关键突破,成功解决了困扰业界二十年的芯片散热与性能瓶颈问题。相关成果已发表于国际顶级期刊《自然·通讯》与《科学·进展》。  该研究的核心在于改善半导体材料层间的界面质量,特别是第三代半导体氮化镓与第四代半导体氧化镓之间的高效集成。  传统方法采用氮化铝作为中间层,但其在生长过程中会自发形成粗糙、不规则的“岛屿”结构,这一自2014年诺贝尔奖相关成果以来始终未能根本解决的难题,严重制约了射频芯片功率的提升。  研究团队通过创新性地在高能离子注入技术,使晶体成核层表面变得平整光滑,从而将界面的热阻降低至原先的三分之一,有效解决了高功率半导体芯片的共性散热问题。  基于此项突破,团队研制出的氮化镓微波功率器件,其单位面积功率较当前市面上最先进的同类器件提升了30%至40%。  据团队成员周弘教授介绍,这项技术意味着未来探测设备的探测距离将显著增加,通信基站则可实现更广的信号覆盖与更低的能耗。  对于普通用户,该技术也有望逐步带来体验升级。周弘指出:“未来若在手机中应用此类芯片,在偏远地区的信号接收能力会更强,续航时间也可能延长。”团队目前正进一步研究将金刚石等超高热导材料应用于半导体,如能攻克相关技术,半导体器件的功率处理能力有望再提升一个数量级,达到当前水平的十倍甚至更高。  这项突破不仅打破了长期存在的技术瓶颈,也为未来半导体器件向更高功率、更高效率发展奠定了关键基础。
2026-01-20 13:15 阅读量:359
我国芯片制造核心装备取得重要突破
  近日,由中核集团中国原子能科学研究院自主研制的我国首台串列型高能氢离子注入机(POWER-750H)成功出束,核心指标达到国际先进水平。这标志着我国已全面掌握串列型高能氢离子注入机的全链路研发技术,攻克了功率半导体制造链关键环节,为推动高端制造装备自主可控、保障产业链安全奠定坚实基础。  离子注入机与光刻机、刻蚀机、薄膜沉积设备并称为芯片制造“四大核心装备”,是半导体制造不可或缺的“刚需”设备。此次高能氢离子注入机的成功研制,是核技术与半导体产业深度融合的重要成果,将有力提升我国在功率半导体等关键领域的自主保障能力,更为助力“双碳”目标实现、加快形成新质生产力提供强有力技术支撑。  长期以来,我国高能氢离子注入机完全依赖国外进口,其研发难度大、技术壁垒高,是制约我国战略性产业升级的瓶颈之一。中国原子能科学研究院依托在核物理加速器领域数十年的深厚积累,以串列加速器技术作为核心手段,破解一系列难题,完全掌握了串列型高能氢离子注入机从底层原理到整机集成的正向设计能力,打破了国外企业在该领域的技术封锁和长期垄断,将有力提升我国在功率半导体等关键领域的自主保障能力,更为助力“双碳”目标实现、加快发展新质生产力提供强有力技术支撑。
2026-01-20 13:12 阅读量:336
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码