纳芯微:数字隔离器选型,从读懂Datasheet开始

发布时间:2023-10-31 13:07
作者:AMEYA360
来源:纳芯微
阅读量:1909

  相比光耦,数字隔离器如今越来越流行,那么你真的会选数字隔离器吗?由于数字隔离器和光耦的功能基本相同,因此很多参数和光耦类似。但还有很多不一样之处,今天我们就结合Datasheet,来讲一讲数字隔离器的选型。

  从看Datasheet到提出问题

  既然谈到选型,就离不开Datasheet。Datasheet是芯片的说明书,每个产品的说明书都是循序渐进的,从概述到详细参数再到注意事项,Datasheet亦如此,它也有着固有格式,包括产品介绍、关键参数、通过的安规认证(隔离器关系到安全问题必须要有这项)、应用领域、器件基本信息(封装、尺寸)以及产品框图。

  那么,我们也应该循序渐进地逐步确定需求并缩小选型范围。

  拿到Datasheet第一步,就是先看第一页概述,这是对产品的总结,一般包括了参数和介绍等,让我们在短时间内得以迅速了解芯片的性能指标。选型和原型验证往往是系统设计时最花时间的,因此详细阅读并了解非常有助于我们前期筛选。

  然后,从应用角度出发,清晰了解应用具体需求及演进路线,一般Datasheet中都会具体列出适合的应用,比如汽车、光伏、电机、工业自动化等等。

  通过上述介绍,我们已经基本了解产品大致情况,对于应用而言,还需要有一些更为详细的参考,这就是我们接下来要聊的,数字隔离器都要看哪些参数?

  细数藏在参数里的门道

  对于数字隔离器来说,哪些参数值得关注?为了避免纸上谈兵,我们请教了纳芯微产品线总监叶健,深耕隔离器领域多年的他,完整见证了从光耦到数字隔离器的替代过程,提供了很多知识总结。他以纳芯微的NSI82xx-Q1SWWR系列高可靠性多通道超宽体数字隔离器为例,具体解读了数字隔离器的Datasheet。

  虽然Datasheet上存在隔离电压、CMTI、封装、速度、功耗、ESD等大量参数,让人眼花缭乱,但叶健也总结了应当重点观察的参数项。叶健结合纳芯微的产品列出了以下七个主要参数,不分先后。

纳芯微:数字隔离器选型,从读懂Datasheet开始

  首先是隔离电压。隔离产品是一个安规器件,因此一定是围绕着安全进行选型,其中最主要的就是隔离电压的能力。比如纳芯微通过基本隔离、增强隔离等多种产品,覆盖了不同耐压范围,以满足客户不同的系统需求选型。

  其二是ESD。它是隔离芯片高可靠性的重要保证,对绝大多数芯片而言,ESD都是必须的,但也分强弱,而隔离芯片由于所处高压环境中,在系统中通常是处于高低压的接口处,因此ESD同样极为重要。纳芯微实现了8kV的HBM耐压能力,属于芯片级HBM ESD中最高等级。

  第三是CMTI。它是隔离产品另外一个重要指标,用以衡量芯片的抗瞬态干扰能力,也就是芯片在系统应用中的鲁棒性表现。CMTI具体是是指短时间电压上升或下降到可以破坏驱动器输出状态的值,瞬态干扰是由开关节点上的高 DV/DT 引起的,如果CMTI能力不够,可能会导致输出错误,甚至出现电路短路,影响系统安全。纳芯微隔离器的CMTI主要为±200kV/μs,部分型号甚至可达到±250kV/μs。

  第四是封装。这里的封装不止体现在尺寸上,而是与耐压或安规爬电间距等指标相关,也会根据客户的要求或系统要求提供不同芯片选型,但最终目标一定会是在更小尺寸、更高集成度情况下,同时能够满足安规要求。比如纳芯微就提供了包括SOP、SOW、SOWW等不同封装种类,满足不同安规要求,这点之后会细说。

  五是传输速率和延迟。它是数字隔离器高性能的体现,最高可以支持数百Mbps甚至达到Gbps的传输速率。不同通信标准和接口对于数据传输率要求不同,需要仔细审阅。但叶健也强调,无论是1Mbps还是150Mbps,对成本影响并不大,也正因此纳芯微的产品并没有根据传输速率设置更多的产品类别,而是基本都是一步到位做到了150Mbps,可以满足绝大部分应用需求。另外除了传输速率,在Datasheet中也会有时序相关的各类详细参数,这也是系统设计时需要考虑的。

  六是功耗。不过叶健表示,数字隔离器相对光耦而言,功耗已经实现极大降低,因此对于功耗的诉求相对不大,但Datasheet中还是会详细列出各种状况下的功耗指标。

  七是工作温度。工作温度与应用场景强相关,比如车规产品分了Grade 0到Grade 3四个等级,对应不同的温度要求,Grade 0需要覆盖的温度范围是-40℃~150℃,工规则根据不同的应用场景对温度有不同的要求,通常最高要求是-40℃~125℃等,这些都在Datasheet中有详细说明。

  封装的学问

  叶健强调,仅对隔离器而言,封装的影响很大,主要原因是封装的大小直接影响器件的耐压能力,因此这也是需要特别注意的地方。谁都愿意将产品小型化,但更高规格的隔离电压需要更宽的封装。也正因此,纳芯微推出包括普通、宽体以及超宽体的封装,超宽体封装的优势主要体现在两个指标上,一个是15mm爬电距离,另一个是8 kVrms的隔离耐压,增强型隔离器可以提供与两个串联的基本隔离器相当的绝缘水平,这可以满足一些特殊的应用需求,比如光伏逆变器等等。

纳芯微:数字隔离器选型,从读懂Datasheet开始

  纳芯微不同种封装方式及详细指标都在Datasheet中列出

  简而言之,更大封装将允许更高的隔离电压规格。如果您可以选择更小的封装来满足系统的监管要求,那么更小的封装当然有助于节省板空间和成本。此外,您还需要考虑通信接口需要多少个隔离通道,因为通道数越高,封装类型就越重要。

  电气间隙(Clearance)和爬电距离(Creepage)是两个不同指标,电气间隙是两个导电零部件之间或导电零部件与设备界面之间测得的最短空间距离,爬电距离则是指沿绝缘表面测得的两个导电零部件之间或导电零部件与设备界面之间的最短距离。

  电气间隙和爬电距离受环境污染等级、海拔、CTI等影响,尤其是光伏、风电等野外恶劣环境下持续工作场景中,海拔和污染的影响很高。如何尽可能满足电气间隙和爬电距离的要求同时还能减少整体尺寸?纳芯微产品的CTI达到了600V,可以使得系统对爬电距离的要求降到最低,从而减少系统尺寸。

  安全标准至关重要

  光是满足参数标准,并不意味着选型结束,隔离器还要关注安全认证指标,作为安全相关产品,认证往往都会放在最醒目位置,比如纳芯微Datasheet第一页中就给出了其满足的安规认证标准,包括UL1577、CQC、CSA、VDE等不同认证体系。认证标准之所以重要,是因为制造商在选择带有认证标志的产品后,就可以很容易拿到系统的安规证书,使得产品放心地在全球范围内的使用和销售。

  UL1577标准是数字隔离器的关键元件级认证要求,适用于光隔离器、磁隔离器以及电容隔离器。为通过该标准的认证,器件必须承受隔离电压Viso(由制造商规定,通常为2.5kVrms或5kVrms)达1分钟。该规范还规定隔离器需要采用120%隔离电压进行100%生产测试,持续时间为1秒钟。

  另外,数字隔离器还需要参考CQC、CSA、VDE等地区性认证标准。

  安规认证背后,是严格的测试流程。需要经过包括老化测试,耐高压测试,抽样测试,宽温测试,寿命测试等各类测试,尤其是寿命测试,甚至需要半年以上才算一次完整的测试周期。

  通过机构认证并不意味结束,在产品量产时,还需要对每颗芯片进行测试。比如,纳芯微的每颗隔离器在出厂时都通过了高压测试,并且每季度还要进行批次性抽样测试。以完整的测试流程确保了隔离器件的安全可靠。

  写在最后

  Datasheet后半部分基本就是芯片的具体引脚布局图,特性指标,细节介绍,详细实测结果,应用指南,封装尺寸图,认证指南等等,为工程师在不同阶段的系统设计提供参考。

  由于隔离器件并不属于主芯片,因此使用过程中需要特别注意的事项不多,如果是主处理器等产品,Datasheet可能会有数百页之多。但隔离牵扯到至关重要的安全,因此还是需要工程师仔细完整的阅读所有相关信息。

  从分析纳芯微的Datasheet中,我们不光了解到数字隔离器的关键参数在选型中的作用,也包括安全标准介绍等基础知识,更是明显看到纳芯微乃至国产器件的进步,这一方面来自纳芯微对于研发的不断投入,也得益于其一直凭借贴近应用、贴近市场的方法论进行产品开发。

  总而言之,想要用好一款产品或技术,首先需要的是了解他,而了解的最好方式就是阅读Datasheet。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
纳芯微高压半桥驱动NSD2622N:为E-mode GaN量身打造高可靠性、高集成度方案
  纳芯微发布专为增强型GaN设计的高压半桥驱动芯片NSD2622N,该芯片集成正负压稳压电路,支持自举供电,具备高dv/dt抗扰能力和强驱动能力,可以显著简化GaN驱动电路设计,提升系统可靠性并降低系统成本。   应用背景  近年来,氮化镓高电子迁移率晶体管(GaN HEMT)凭借高开关频率、低开关损耗的显著优势,能够大幅提升电源系统的功率密度,明显优化能效表现,降低整体系统成本,在人工智能(AI)数据中心电源、微型逆变器、车载充电机(OBC)等高压大功率领域得到日益广泛的应用。  然而,GaN器件在实际应用中仍面临诸多挑战。以增强型氮化镓(E-mode GaN)器件为例,由于导通阈值较低,在高压大功率场景,特别是硬开关工作模式下,如果驱动电路设计不当,高频、高速开关过程中极易因串扰而导致误导通现象。与此同时,适配的驱动电路设计也比较复杂,这无疑提高了GaN器件的应用门槛。  为了加速GaN应用普及,国内外头部GaN厂家近年来推出了一些集成驱动IC的GaN功率芯片,特别是MOSFET-LIKE类型的GaN功率芯片,其封装形式可与Si MOSFET兼容,在一定程度上降低了GaN驱动电路的设计难度。但集成驱动的GaN芯片仍存在很多局限性:一方面难以满足一些客户对于差异化产品设计的需求;另一方面,在多管并联、双向开关等应用场景中并不适用,所以在诸多应用场景中仍需要分立GaN器件及相应的驱动电路。对此,纳芯微针对E-mode GaN开发专用驱动芯片NSD2622N,致力于为高压大功率场景下的GaN应用,提供高性能、高可靠性且具备成本竞争力的驱动解决方案。  产品特性  NSD2622N是一款专为E-mode GaN设计的高压半桥驱动芯片,该芯片内部集成了电压调节电路,可以生成5V~6.5V可配置的稳定正压,从而实现对GaN器件的可靠驱动;内部还集成了电荷泵电路,可以生成-2.5V的固定负压用于GaN可靠关断。该芯片由于将正负电源稳压电路集成到内部,因此可以支持高边输出采用自举供电方式。  NSD2622N采用纳芯微成熟可靠的电容隔离技术,高边驱动可以支持-700V到+700V耐压,最低可承受200V/ns的SW电压变化速率,同时高低边输出具有低传输延时和较小的传输延时匹配特性,完全满足GaN高频、高速开关的需求。此外,NSD2622N高低边输出均能提供2A/-4A峰值驱动电流,足以应对各类GaN应用对驱动速度的要求,并且可用于GaN并联使用场景。NSD2622N内部还集成一颗5V固定输出的LDO,可以为数字隔离器等电路供电,以用于需要隔离的应用场景。  NSD2622N详细参数:  SW耐压范围:-700V~700V  SW dv/dt抑制能力大于200V/ns  支持5V~15V宽范围供电  5V~6.5V可调输出正压  -2.5V内置输出负压  2A/4A峰值驱动电流  典型值10ns最小输入脉宽  典型值38ns输入输出传输延时  典型值5ns脉宽畸变  典型值6.5ns上升时间(1nF 负载)  典型值6.5ns下降时间(1nF 负载)  典型值20ns内置死区  高边输出支持自举供电  内置LDO固定5V输出用于数字隔离器供电  具备欠压保护、过温保护  工作环境温度范围:-40℃~125℃NSD2622N功能框图  告别误导通风险,提供更稳定的驱动电压  相较于普通的Si MOSFET驱动方案,E-mode GaN驱动电路设计的最大痛点是需要提供适当幅值且稳定可靠的正负压偏置。这是因为E-mode GaN驱动导通电压一般在5V~6V,而导通阈值相对较低仅1V左右,在高温下甚至更低,往往需要负压关断以避免误导通。为了给E-mode GaN提供合适的正负压偏置,一般有阻容分压和直驱两种驱动方案:  1.阻容分压驱动方案  这种驱动方案可以采用普通的Si MOSFET驱动芯片,如图所示,当驱动开通时,图中Cc与Ra并联后和Rb串联,将驱动供电电压(如10V)进行分压后,为GaN栅极提供6V驱动导通电压,Dz1起到钳位正压的作用;当驱动关断时,Cc电容放电为GaN栅极提供关断负压,Dz2起到钳位负压的作用。阻容分压驱动方案  以上阻容分压电路尽管对驱动芯片要求不高,但由于驱动回路元器件数量较多,容易引入额外寄生电感,会影响GaN在高频下的开关性能。此外,由于阻容分压电路的关断负压来自于电容Cc放电,关断负压并不可靠。  如以下半桥demo板实测波形所示,在启机阶段(图中T1)由于电容Cc还没有充电,负压无法建立,所以此时是零压关断;在驱动芯片发波后的负压关断期间(图中T2),负压幅值随电容放电波动;在长时间关断时(图中T3),电容负压无法维持,逐渐放电到零伏。因此,阻容分压电路往往用于对可靠性要求相对较低的中小功率电源应用,对于大功率电源系统并不适用。E-mdoe GaN采用阻容分压驱动电路波形(CH2为驱动供电,CH3为GaN栅源电压)  2.直驱式驱动方案  直驱式驱动方案首先需要选取合适欠压点的驱动芯片,如NSI6602VD,专为驱动E-mode GaN设计了4V UVLO阈值,再配合外部正负电源稳压电路,就可以直接驱动E-mode GaN。  这种直驱式驱动电路在辅助电源正常工作时,各种工况下都可以为GaN提供可靠的关断负压,因此被广泛使用在各类高压大功率GaN应用场景。  纳芯微开发的新一代GaN驱动NSD2622N则直接将正负稳压电源集成在芯片内部,如以下半桥demo板实测波形所示,NSD2622N关断负压的幅值、维持时间不受工况影响,在启机阶段(图中T1)驱动发波前负压即建立起来;在GaN关断期间(图中T2),负压幅值稳定;在驱动芯片长时间不发波时(图中T3),负压仍然稳定可靠。E-mode GaN采用NSD2622N驱动电路波形(CH2为低边GaN Vds,CH3为低边GaN Vgs)  简化电路设计,降低系统成本  NSD2622N不仅可以通过直驱方式稳定、可靠驱动GaN,最为重要的是,NSD2622N通过内部集成正负稳压电源,显著减少了外围电路元器件数量,并且采用自举供电方式,极大简化了驱动芯片的供电电路设计并降低系统成本。  以3kW PSU为例,假设两相交错TTP PFC和全桥LLC均采用GaN器件,对两种直驱电路方案的复杂度进行对比:  如果采用NSI6602VD驱动方案,需要配合相应的隔离电源电路与正负电源稳压电路,意味着每一路半桥的高边驱动都需要一路独立的隔离供电,所以隔离辅助电源的设计较为复杂。鉴于GaN驱动对供电质量要求较高,且PFC和LLC的主功率回路通常分别放置在独立板卡上,因此,往往需要采用两级辅助电源架构,第一级使用宽输入电压范围的器件如flyback生成稳压轨,第二级可以采用开环全桥拓扑提供隔离电源,并进一步稳压生成NSI6602VD所需的正负供电电源,以下为典型供电架构:NSI6602VD驱动方案典型供电架构  如果采用NSD2622N驱动方案,则可以直接通过自举供电的方式来简化辅助电源设计,以下为典型供电架构:NSD2622N驱动方案典型供电架构  将以上两种GaN直驱方案的驱动及供电电路BOM进行对比并汇总在下表,可以看到NSD2622N由于可以采用自举供电,和NSI6602VD的隔离供电方案相比极大减少了整体元器件数量,并降低系统成本;即使采用隔离供电方式,NSD2622N由于内部集成正负稳压电源,相比NSI6602VD外围电路更简化,因此整体元器件数量也更少,系统成本更低。GaN直驱方案的驱动及供电电路BOM对比  适配多种类型GaN,驱动电压灵活调节  纳芯微开发的E-mode GaN驱动芯片NSD2622N,不仅性能强大,还能够适配不同品牌、不同类型(例如电压型和电流型)以及不同耐压等级的GaN器件。举例来说,NSD2622N的输出电压通过反馈电阻可以设定5V~6.5V的驱动电压。这样一来,在搭配不同品牌的GaN时,仅仅通过调节反馈电阻就可以根据GaN特性设定最合适的驱动电压,使不同品牌的GaN都能工作在最优效率点。  除此之外,NSD2622N具备最低200V/ns的SW节点dv/dt抑制能力,提升了GaN开关速度上限;采用更为紧凑的QFN封装以及提供独立的开通、关断输出引脚,从而进一步减小驱动回路并降低寄生电感;提供过温保护功能,使GaN应用更安全。  纳芯微还可提供单通道GaN驱动芯片NSD2012N,采用3mm*3mm QFN封装,并增加了负压调节功能,从而满足更多个性化应用需求。
2025-05-30 09:52 阅读量:382
纳芯微汽车前灯照明解决方案——重磅新品三连发!
纳芯微车规级绝压传感器NSPAD1N系列拓展压力传感性能边界
  纳芯微近日发布全新 NSPAD1N 系列超小体积绝压传感器,专为车规及多种压力检测应用场景打造。该系列产品具备高精度、低功耗、快速响应和强承压能力,符合AEC-Q100标准,支持模拟和数字多种输出方式,广泛适用于座椅气囊、座椅按摩、汽车ECU气压检测、通机控制器等车规场景,同时兼容工业控制、智能气表等工业及消费应用。  随着汽车逐步演化为集舒适与智能于一体的“移动第三生活空间”, 座椅作为关键交互部件,正经历从基础支撑向智能舒适系统的转型。座椅气囊和按摩功能也日益成为提升驾乘体验与安全性能的重要配置。  针对这一趋势,NSPAD1N系列采用高精度信号调理芯片,对MEMS芯体输出进行校准和温度补偿,支持10kPa至400kPa压力范围内的模拟输出(0~5V)及数字输出(I2C/SPI),灵活适配多种应用需求。  该系列采用3mm x3mm DFN-8的小型封装,并配备可润湿侧翼设计(wettable flank),满足车规电子小型化布板需求,支持AOI自动焊接检测。其创新的MIS基板方案,有效规避传统LGA-FR4方案在温度循环下的分层风险,显著提升在高低温交变环境下的结构稳定性。  此外,传感器正面采用四小孔进气结构,在确保气流通畅的同时形成物理屏障,有效防止异物侵入芯片腔体,提升环境适应性。  NSPAD1N系列还具备高转换速度、低功耗以及强过载与耐爆压力能力,在复杂工况下依然保持高度稳定与可靠。  产品特性  高精度、低功耗  高度线性,100%温度补偿,无需校准;全寿命精度优于±1%F.S.(-20℃~115℃),工作电流<3mA。  多种输出方式  支持模拟(绝对压力输出)与数字(I2C/SPI)信号,适配性强,便于集成。  量程与输出灵活定制  10kPa~400kPa范围可调,支持定制供电电压和输出方式,覆盖多样应用需求。  小型化封装  3mm x 3mm DFN-8车规封装,外围电路精简,助力小型化设计与系统优化。  车规级可靠性  符合AEC-Q100标准,可承受600kPa过载与800kPa爆破压力,确保在严苛环境下的稳定运行。  依托自主可控的MEMS设计与封装工艺,以及多压力温度点自动化批量标定能力,纳芯微为客户提供稳定高效的交付保障,降低供应链风险。同时支持定制化MEMS晶圆和合封产品开发,灵活应对多元应用场景。
2025-05-23 11:36 阅读量:345
从运动到感知,纳芯微磁传感器为人形机器人赋能
  纳芯微磁传感器技术为人形机器人运动控制提供了关键解决方案,其高精度磁角度编码器可精准检测关节位置和运动轨迹,赋予机器人更灵敏的感知能力和更流畅的运动表现。相关技术突破将推动人形机器人在通用关节和执行器等核心部件上的性能提升,为智能机器人产业发展注入新动能。  随着人形机器人技术的快速发展和市场化进程加速,其应用场景正从工业领域向消费级市场拓展。纳芯微凭借广泛的产品线布局,在这一新兴市场中占据了重要地位,其产品涵盖MCU、传感器(电流、电压、温度、位置)、栅极驱动、缓冲器、电池管理,以及通信、功放、监控和基准等芯片解决方案,能够为机器人系统提供完整的信号链支持。  纳芯微技术市场经理陈旭骅在2025CAIMRS AI+人形机器人研讨会上介绍,从当前主流人形机器人的结构来看,单台设备平均需配备71个磁编码器和90个电流传感器,具体需求拆解如下:  机械臂(自由臂):以七自由度机械臂为例,其7个关节每个关节的减速机前后均需1个编码器,单臂需14个磁角度传感器来实现电机运行及末端位置检测,双臂合计28个。同时需配套14个驱动器和28个电流传感器。  腿部和腰部关节:按四自由度保守计算,各需16个磁编码器;若包含腰部旋转和弯腰动作,则要额外增加4个磁编码器,总计20个。部分高端设计采用六自由度方案,进一步推升了传感器需求。  膝关节:针对爆发力要求高的跑跳动作,定制化膝关节动力电机通常配备4个磁编码器(每膝2个)。  灵巧手:目前国内外方案差异较大,海外有些灵巧手能实现十六、二十二自由度。国内市场比较常见的是6个空心杯为主的结构。拇指关节是一个二自由度结构,需要3个角度编码器(1个/空心杯电机+末端检测);四指关节基本上以4个空心杯电机为主,每指2关节配备2个末端位置检测编码器,总计12个。手腕类似腰部旋转结构,需额外的编码器支持。  电池管理方面:主流200A电池组需配置2个高精度电流传感器。视觉执行机构方案多样,通常需2-4个磁编码器实现精准定位。  纳芯微高精度与高可靠性传感方案  在角度传感领域,编码器技术经历了从电位器到光电、磁角度及电感式编码器的演进。目前,纳芯微聚焦于磁角度编码器和电感式编码器的研发与量产,其中磁角度编码器已广泛应用于工业及消费领域,而电感式编码器则在汽车EPS(电动助力转向系统)、扭矩传感等场景中展现优势。  纳芯微磁角度编码器采用非接触式设计,具备高可靠性、抗震、抗污染等特性,尤其适合动态环境。传统光电编码器对环境洁净度要求高,而人形机器人的跌落、碰撞等动作易导致其失效。相比之下,磁角度编码器不仅适应性强,还可实现17bit分辨率(精度达0.002°),且仅需单芯片+磁铁的简洁方案即可完成高精度检测,大幅降低系统复杂度。  纳芯微的磁编码器主要有三种不同的技术路线,可以覆盖全场景需求。首先是低成本的霍尔式磁编码器方案,适用于空心杯电机等对性价比敏感的场景。第二是AMR磁阻式编码器,具有高灵敏度,分辨率可达21bit,主要用于工控市场和机器人中的伺服电机,以及配合机器人行星减速机的多颗协同控制方案。第三是新兴的电感式编码器方案,适合中空走线或大电流场景(避免磁场干扰),目前已进入小批量阶段,未来将拓展至人形机器人关节等应用。  总之,纳芯微通过多技术路径布局,为不同精度、成本及环境要求的场景提供定制化解决方案,持续推动编码器技术在机器人领域的创新应用。  纳芯微磁编码器安装方式详解  磁编码器的安装方式主要分为在轴安装和离轴安装两大类。在轴安装是指电机轴、磁铁轴心和芯片轴心三轴同心的安装方式,它具有结构简单、精度稳定的特点。而离轴安装则是当前行业研究的热点,特别适用于需要中空结构的减速器应用场景,为人形机器人等新兴领域提供了更为灵活的解决方案。针对这两种安装方式,纳芯微开发了不同的产品系列,以满足多样化需求。  目前纳芯微有三款在轴安装磁编码器产品:MT6835(±0.02°)、MT6826S(±0.1°)和MT6701(±1.0°)。这三款产品的年出货量已达到500-600万片,广泛应用于步进电机和伺服电机领域。其中MT6701主要应用于空心杯电机等对成本敏感的场景;MT6826S和MT6835基于磁阻技术,凭借更高精度被用于伺服电机和行星减速机的多颗协同控制方案。  关于安装技术细节,在轴安装又可分为径向充磁和轴向充磁两种方案。径向充磁方案磁场发散较远,对安装距离要求较低;轴向充磁方案磁力线更为集中,适合1mm以内的精密安装场景,是纳芯微主推的方案。  离轴安装是一种创新方案,针对机器人行业对中空结构的需求,纳芯微提供三种离轴解决方案。一是集成磁头方案(MT6620),优势是集成度高,挑战是对磁铁的磁间距和安装位置要求较高;二是低成本方案(MT6709QC),其特点是通过外接磁传感器解码,通过自校准可将精度提升至±0.1°(匀速自校准)或±0.2°(简洁校准)。  第三种是电感式编码器方案(MT6901),其创新性在于,采用电感技术解决了中空走线干扰问题,能够有效规避EMC等信号干扰。这种双码道游标方案是当前市场主流的绝对值编码器,可广泛应用在机器人关节侧。  为了满足绝对位置的监测需求,纳芯微还推出了两种创新方案——单码道增量控制和M序列方案。单码道增量控制采用单磁环设计,通过中间的回零信号实现位置识别。该方案采用增量控制方式,虽然存在上电时存在噪声问题,但在工业场景中仍有广泛应用。  M序列方案则更为先进,融合光编理论创新而成。其工作原理是通过伪随机序列精确定位外圈对极位置,结合增量控制实现360°绝对角度测量。具体流程为:上电时读取内码道信号确定初始位置,然后通过增量方式进行机械控制,由芯片内部解析获得绝对角度信息。  上述两种方案各有特点:传统方案结构简单但存在噪声;M序列方案精度更高但增加了复杂度。两者均能有效满足绝对位置监测需求,可为不同应用场景提供灵活选择。  为满足不同精度需求,纳芯微开发了多种复合安装方案。其中,基础复合方案采用中间轴向充磁的在轴安装,外圈采用4颗传感器解码,特点是平衡成本与性能。高精度复合方案增加了中间磁铁屏蔽罩,能够有效隔离外部磁场干扰,提升测量精度。  纳芯微还在两个方案基础上开发了两种全中空离轴方案。其外部磁环随外转子旋转,内部磁环连接减速器电机端,采用8颗线性霍尔输出信号至解码芯片。通过增加磁屏蔽设计,其外圈精度可达0.2-0.3°,内圈精度可达0.8-1°。该方案的可靠性已在行业实际应用中得到了验证,完美解决了中空结构下的高精度测量需求。  纳芯微即将推出的MT6901电感式编码器将成为人形机器人关节的核心解决方案。该产品采用创新的三层电感技术,在定子两侧各配置一个转子,通过电磁感应实现双面信号采集,从根本上消除传统方案单侧感应的局限性。  虽然三块PCB的精密平衡存在技术挑战,但这一设计实现了内环套外环的感应方案,能够显著提升测量精度,完美解决中空走线的EMC干扰问题,特别适合需要高可靠性的机器人关节应用,从而推动整个机器人行业的技术升级。  纳芯微将持续拓展智能化边界  纳芯微通过持续技术创新,建立了完整的磁编码器解决方案体系,从传统在轴安装到创新离轴方案,从单一测量到复合安装,为工业自动化、人形机器人等领域提供了多样化的选择。特别是正在开发的MT6901电感式编码器,有望解决行业长期存在的中空走线的干扰难题,推动磁编码器技术进入新的发展阶段。  纳芯微的传感器产品已成功导入多家客户的人形机器人项目,在空心杯电机和通用关节领域实现了批量出货。与此同时,在四足机器人市场也取得了突破,多个项目进入量产阶段。作为国产传感器供应商,纳芯微将持续为机器人行业提供高可靠性解决方案,助力国产人形机器人把握市场机遇,实现技术突破。
2025-05-23 11:36 阅读量:402
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码