想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

Release time:2023-12-20
author:AMEYA360
source:纳芯微
reading:2566

  作为当下热门的第三代半导体技术,GaN在数据中心、光伏、储能、电动汽车等市场都有着广阔的应用场景。和传统的Si器件相比,GaN具有更高的开关频率与更小的开关损耗,但对驱动IC与驱动电路设计也提出了更高的要求。

  按照栅极特性差异,GaN分为常开的耗尽型(D-mode)和常关的增强型(E-mode)两种类型;按照应用场景差异,GaN需要隔离或非隔离、低边或自举、零伏或负压关断等多种驱动方式。针对不同类型的GaN和各种应用场景,纳芯微推出了一系列驱动IC解决方案,助力于充分发挥GaN器件的性能优势。

  01、耗尽型(D-mode)GaN 驱动方案

  一、D-mode GaN类型与特点

  由于常开的耗尽型GaN本身无法直接使用,需要通过增加外围元器件的方式,将D-mode GaN从常开型变为常关型,主要包括级联(Cascode)和直驱(Direct Drive)两种技术架构;其中,级联型的D-mode GaN更为主流。如下图1,级联型的D-mode GaN是通过利用低压Si MOSFET的开关带动整体的开关,从而将常开型变为常关型。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  尽管低压Si MOS在导通时额外串入沟道电阻,并且参与了器件的整体开关过程,但由于低压Si MOS的导通电阻和开关性能本身就很理想,所以对GaN器件的整体影响非常有限。

  级联型的D-mode GaN最大的优势在于可用传统Si MOS的驱动电路,以0V/12V电平进行关/开的控制。但需要注意的是,尽管驱动电路和Si MOS相同,但由于级联架构的D-mode GaN的开关频率和速度远高于传统的Si MOS,所以要求驱动IC能够在很高的dv/dt环境下正常工作。

  如下图2和图3所示为氮化镓采用半桥拓扑典型应用电路,GaN的高频、高速开关会导致半桥中点的电位产生很高的dv/dt跳变,对于非隔离驱动IC,驱动芯片的内部Level shifter寄生电容会在高dv/dt下产生共模电流;对于隔离驱动IC,驱动芯片的输入输出耦合电容同样构成共模电流路径。这些共模电流耦合到信号输入侧会对输入信号造成干扰,可能会触发驱动芯片的误动作,严重时甚至会引发GaN发生桥臂直通。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  因此,共模瞬变抗扰度(CMTI)是选择GaN驱动IC的一个重要指标。对于GaN器件,特别是高压、大功率应用,推荐使用100V/ns以上CMTI的驱动IC,以满足更高开关频率、更快开关速度的需求。

  二、纳芯微D-mode GaN驱动方案

  纳芯微提供多款应用于D-mode GaN的驱动解决方案,以满足不同功率段、隔离或非隔离等不同应用场景的需求。

  1)NSD1624:高可靠性高压半桥栅极驱动器

  传统的非隔离高压半桥驱动IC一般采用level-shifter架构,由于内部寄生电容的限制,通常只能耐受50V/ns的共模瞬变。NSD1624创新地将隔离技术应用于高压半桥驱动IC的高边驱动,将dv/dt耐受能力提高到150V/ns,并且高压输出侧可以承受高达±1200V的直流电压。此外,NSD1624具有+4/-6A驱动电流能力,能工作在10~20V 电压范围,高边和低边输出均有独立的供电欠压保护功能(UVLO)。NSD1624 可提供SOP14,SOP8,与小体积的LGA 4*4mm封装,非常适合高密度电源的应用,可适用于各种高压半桥、全桥电源拓扑。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  2)NSI6602V/NSI6602N:第二代高性能隔离式双通道栅极驱动器

  NSI6602V/NSI6602N是纳芯微第二代高性能隔离式双通道栅极驱动器, 相比第一代产品进一步增强了抗干扰能力和驱动能力,同时提高了输入侧的耐压能力,且功耗更低,可以支持最高2MHz工作开关频率。每个通道输出以快速的25ns传播延迟和5ns的最大延迟匹配来提供最大6A/8A的拉灌电流能力,150V/ns的共模瞬变抗扰度(CMTI) 提高了系统抗共模干扰能力。NSI6602V/NSI6602N有多个封装可供选择,最小封装是4*4mm LGA 封装,可用于GaN等功率密度要求高的场景。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  3)NSI6601/NSI6601M:隔离式单通道栅极驱动器

  NSI6601/6601M 是隔离式单通道栅极驱动器,可以提供分离输出用于分别控制上升和下降时间。驱动器的输入侧为3.1V至17V电源电压供电,输出侧最大电源电压为32V,输入输出电源引脚均支持欠压锁定(UVLO)保护。它可以提供5A/5A 的拉/灌峰值电流,最低150V/ns的共模瞬变抗扰度(CMTI)确保了系统鲁棒性。此外,NSI6601M还集成了米勒钳位功能,可以有效抑制因米勒电流造成的误导通风险。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  02、增强型(E-mode)GaN驱动方案

  一、E-mode GaN类型与特点

  不同于Cascode D-mode GaN通过级联低压Si MOS来实现常关型,E-mode GaN直接对GaN栅极进行p型掺杂来修改能带结构,改变栅极的导通阈值,从而实现常断型器件。

  根据栅极结构不同,E-mode GaN又分为欧姆接触的电流型和肖特基接触的电压型两种技术路线,其中电压型E-mode GaN最为主流,下文将主要介绍该类型GaN的驱动特性和方案。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  这种类型E-mode GaN的优点是可以实现0V关断、正压导通,并且无需损害GaN的导通和开关特性。由于GaN没有体二极管,不存在二极管的反向恢复问题,在硬开关场合可以有效降低开关损耗和EMI噪声。然而,电压型E-mode GaN驱动电压范围较窄,一般典型驱动电压范围在5~6V,并且开启阈值也很低,对驱动回路的干扰与噪声会比较敏感,设计不当的话容易引起GaN误开通甚至栅极击穿。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  *不同品牌的E-mode GaN栅极耐受负压能力差别较大,有的仅能耐受-1.4V,有的可耐受-10V负压。

  在低电压、小功率,或对死区损耗敏感的应用中,一般可使用0V电压关断;但是在高电压、大功率系统中,往往推荐采用负压关断来增强噪声抗扰能力,保证可靠关断。在设计栅极关断的负压时,除了需要考虑GaN本身的栅极耐压能力外,还需要考虑对效率的影响。如下表所示,这是因为E-mode GaN在关断状态下可以实现电流的反向流动即第三象限导通,但是反向导通压降和栅极关断的负压值相关,用于栅极关断的电压越负,反向压降就越大,相应的会带来更大的死区损耗。一般,对于500W以上高压应用,特别是硬开关,推荐-2V~-3V的关断负压。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  ➯ 考虑E-mode GaN的以上驱动特性,对驱动器和驱动电路的设计一般需要满足:

  ◆ 具备100V/ns以上的CMTI,以满足高频应用的抗扰能力;

  ◆可提供5~6V的驱动电压,并且驱动器最好集成输出级LDO;

  ◆ 驱动器最好有分开的OUTH和OUTL引脚,从而不必通过二极管来区分开通和关断路径,避免了二极管压降造成GaN误导通的风险;

  ◆ 在高压、大功率应用特别是硬开关拓扑,可以提供负压关断能力;

  ◆ 尽可能小的传输延时和传输延时匹配,从而可以设定更小的死区时间,以减小死区损耗。

  二、E-mode GaN驱动方案

  分压式方案

  E-mode GaN可以采用传统的Si MOS驱动器来设计驱动电路,需要通过阻容分压电路做降压处理。如图8所示驱动电路,开通时E-mode GaN栅极电压被Zener管稳压在6V左右,关断时被Zener管的正向导通电压钳位在-0.7V左右。因此,GaN的开通和关断电压由Dz决定,和驱动器的供电电压无关。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  更进一步的,如果在Dz的基础上,再反向串联一个Zener管,那么就可以实现负压关断。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  如图10所示,为NSD1624采用10V供电,通过阻容分压的方式用于驱动E-mode GaN的典型应用电路。同样的,隔离式驱动器NSI6602V/NSI6602N、NSI6601/NSI6601M也可以采用这种电路,用于驱动E-mode GaN。对于阻容分压电路的原理与参数设计在E-mode GaN厂家的官网上都有相关应用笔记,在此不展开详解。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  直驱式方案

  尽管阻容分压式驱动电路,可以采用传统的Si MOSFET驱动器来驱动E-mode GaN,但是需要复杂的外围电路设计,并且分压式方案的稳压管的寄生电容会影响到E-mode GaN的开关速度,应用会有一些局限性。对此,纳芯微针对E-mode GaN推出了专门的直驱式驱动器,外围电路设计更简单,可靠性更高,可以充分发挥E-mode GaN的性能优势。

  1)NSD2621:E-mode GaN专用高压半桥栅极驱动器

  NSD2621是专为E-mode GaN设计的高压半桥驱动芯片,该芯片采用了纳芯微的成熟电容隔离技术,可以支持-700V到+700V耐压,150V/ns的半桥中点dv/dt瞬变,同时具有低传输延时特性。高低边的驱动输出级都集成了LDO,在宽VCC供电范围内均可输出5~6V的驱动电压,并可提供2A/-4A的峰值驱动电流,同时具备了UVLO 功能,保护电源系统的安全工作。NSD2621 可提供高集成度的LGA (4*4mm) 封装,适用于高功率密度要求的应用场景。图5为NSD2621的典型应用电路,相比分压式电路,采用NSD2621无需电阻、电容、稳压管等外围电路,简化了系统设计,并且驱动更可靠。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  2)NSD2017:E-mode GaN专用单通道低边栅极驱动器

  NSD2017是专为驱动E-mode GaN设计的车规级单通道低边驱动芯片,具有欠压锁定和过温保护功能,可以支持5V供电,分离的OUTH和OUTL引脚用于分别调节GaN的开通和关断速度,可以提供最大7A/-5A的峰值驱动电流。NSD2017动态性能出色,具备小于3ns的传输延时,支持1.25ns最小输入脉宽以及皮秒级的上升下降时间,可应用于激光雷达和电源转换器等应用。NSD2017有1.2mm*0.88mm WLCSP和2mm*2mm DFN车规级紧凑封装可选,封装具有最小的寄生电感,以减少上升和下降时间并限制振铃幅值。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  3)NSI6602V/NSI6602N:E-mode GaN隔离驱动

  专门针对E-mode GaN隔离驱动的需求,纳芯微调节NSI6602V/NSI6602N的欠压点,使其可以直接用于驱动E-mode GaN:当采用0V关断时,选择4V UVLO版本;当采用负压关断时,可以选择6V UVLO版本。需要注意的是,当采用NSI6602V/NSI6602N直接驱动E-mode GaN时,上管输出必须采用单独的隔离供电,而不能采用自举供电。这是因为当下管E-mode GaN在死区时进入第三象限导通Vds为负压,此时驱动上管如果采用自举供电,那么自举电容会被过充,容易导致上管E-mode GaN的栅极被过压击穿。图13为NSI6602V/NSI6602N直驱E-mode GaN时的典型应用电路,提供+6V/-3V的驱动电压。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  03、GaN功率芯片方案

  NSG65N15K是纳芯微最新推出的GaN功率芯片产品,内部集成了半桥驱动器和两颗耐压650V、导阻电阻150mΩ的E-mode GaN HEMT。NSG65N15K通过将驱动器和GaN合封在一起,消除了共源极电感Lcs,并且将栅极回路电感Lg也降到最小,避免了杂散电感的影响。NSG65N15K是9*9mm的QFN封装,相比传统分立方案的两颗5*6mm DFN封装的GaN开关管加上一颗4*4mm QFN封装的高压半桥驱动,加上外围元件,总布板面积可以减小40%以上。此外,NSG65N15K内置可调死区时间、欠压保护、过温保护功能,有利于实现GaN 应用的安全、可靠工作,并充分发挥其高频、高速的特性优势,适用于各类中小功率GaN应用场合。

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

  04、纳芯微GaN驱动方案选型指南

  综上所述,纳芯微针对不同类型的GaN和各种应用场景,推出了一系列驱动IC解决方案,客户可以根据需求自行选择相应的产品:

想要玩转氮化镓?纳芯微全场景GaN驱动IC解决方案来啦!

("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
纳芯微高压半桥驱动NSD2622N:为E-mode GaN量身打造高可靠性、高集成度方案
  纳芯微发布专为增强型GaN设计的高压半桥驱动芯片NSD2622N,该芯片集成正负压稳压电路,支持自举供电,具备高dv/dt抗扰能力和强驱动能力,可以显著简化GaN驱动电路设计,提升系统可靠性并降低系统成本。   应用背景  近年来,氮化镓高电子迁移率晶体管(GaN HEMT)凭借高开关频率、低开关损耗的显著优势,能够大幅提升电源系统的功率密度,明显优化能效表现,降低整体系统成本,在人工智能(AI)数据中心电源、微型逆变器、车载充电机(OBC)等高压大功率领域得到日益广泛的应用。  然而,GaN器件在实际应用中仍面临诸多挑战。以增强型氮化镓(E-mode GaN)器件为例,由于导通阈值较低,在高压大功率场景,特别是硬开关工作模式下,如果驱动电路设计不当,高频、高速开关过程中极易因串扰而导致误导通现象。与此同时,适配的驱动电路设计也比较复杂,这无疑提高了GaN器件的应用门槛。  为了加速GaN应用普及,国内外头部GaN厂家近年来推出了一些集成驱动IC的GaN功率芯片,特别是MOSFET-LIKE类型的GaN功率芯片,其封装形式可与Si MOSFET兼容,在一定程度上降低了GaN驱动电路的设计难度。但集成驱动的GaN芯片仍存在很多局限性:一方面难以满足一些客户对于差异化产品设计的需求;另一方面,在多管并联、双向开关等应用场景中并不适用,所以在诸多应用场景中仍需要分立GaN器件及相应的驱动电路。对此,纳芯微针对E-mode GaN开发专用驱动芯片NSD2622N,致力于为高压大功率场景下的GaN应用,提供高性能、高可靠性且具备成本竞争力的驱动解决方案。  产品特性  NSD2622N是一款专为E-mode GaN设计的高压半桥驱动芯片,该芯片内部集成了电压调节电路,可以生成5V~6.5V可配置的稳定正压,从而实现对GaN器件的可靠驱动;内部还集成了电荷泵电路,可以生成-2.5V的固定负压用于GaN可靠关断。该芯片由于将正负电源稳压电路集成到内部,因此可以支持高边输出采用自举供电方式。  NSD2622N采用纳芯微成熟可靠的电容隔离技术,高边驱动可以支持-700V到+700V耐压,最低可承受200V/ns的SW电压变化速率,同时高低边输出具有低传输延时和较小的传输延时匹配特性,完全满足GaN高频、高速开关的需求。此外,NSD2622N高低边输出均能提供2A/-4A峰值驱动电流,足以应对各类GaN应用对驱动速度的要求,并且可用于GaN并联使用场景。NSD2622N内部还集成一颗5V固定输出的LDO,可以为数字隔离器等电路供电,以用于需要隔离的应用场景。  NSD2622N详细参数:  SW耐压范围:-700V~700V  SW dv/dt抑制能力大于200V/ns  支持5V~15V宽范围供电  5V~6.5V可调输出正压  -2.5V内置输出负压  2A/4A峰值驱动电流  典型值10ns最小输入脉宽  典型值38ns输入输出传输延时  典型值5ns脉宽畸变  典型值6.5ns上升时间(1nF 负载)  典型值6.5ns下降时间(1nF 负载)  典型值20ns内置死区  高边输出支持自举供电  内置LDO固定5V输出用于数字隔离器供电  具备欠压保护、过温保护  工作环境温度范围:-40℃~125℃NSD2622N功能框图  告别误导通风险,提供更稳定的驱动电压  相较于普通的Si MOSFET驱动方案,E-mode GaN驱动电路设计的最大痛点是需要提供适当幅值且稳定可靠的正负压偏置。这是因为E-mode GaN驱动导通电压一般在5V~6V,而导通阈值相对较低仅1V左右,在高温下甚至更低,往往需要负压关断以避免误导通。为了给E-mode GaN提供合适的正负压偏置,一般有阻容分压和直驱两种驱动方案:  1.阻容分压驱动方案  这种驱动方案可以采用普通的Si MOSFET驱动芯片,如图所示,当驱动开通时,图中Cc与Ra并联后和Rb串联,将驱动供电电压(如10V)进行分压后,为GaN栅极提供6V驱动导通电压,Dz1起到钳位正压的作用;当驱动关断时,Cc电容放电为GaN栅极提供关断负压,Dz2起到钳位负压的作用。阻容分压驱动方案  以上阻容分压电路尽管对驱动芯片要求不高,但由于驱动回路元器件数量较多,容易引入额外寄生电感,会影响GaN在高频下的开关性能。此外,由于阻容分压电路的关断负压来自于电容Cc放电,关断负压并不可靠。  如以下半桥demo板实测波形所示,在启机阶段(图中T1)由于电容Cc还没有充电,负压无法建立,所以此时是零压关断;在驱动芯片发波后的负压关断期间(图中T2),负压幅值随电容放电波动;在长时间关断时(图中T3),电容负压无法维持,逐渐放电到零伏。因此,阻容分压电路往往用于对可靠性要求相对较低的中小功率电源应用,对于大功率电源系统并不适用。E-mdoe GaN采用阻容分压驱动电路波形(CH2为驱动供电,CH3为GaN栅源电压)  2.直驱式驱动方案  直驱式驱动方案首先需要选取合适欠压点的驱动芯片,如NSI6602VD,专为驱动E-mode GaN设计了4V UVLO阈值,再配合外部正负电源稳压电路,就可以直接驱动E-mode GaN。  这种直驱式驱动电路在辅助电源正常工作时,各种工况下都可以为GaN提供可靠的关断负压,因此被广泛使用在各类高压大功率GaN应用场景。  纳芯微开发的新一代GaN驱动NSD2622N则直接将正负稳压电源集成在芯片内部,如以下半桥demo板实测波形所示,NSD2622N关断负压的幅值、维持时间不受工况影响,在启机阶段(图中T1)驱动发波前负压即建立起来;在GaN关断期间(图中T2),负压幅值稳定;在驱动芯片长时间不发波时(图中T3),负压仍然稳定可靠。E-mode GaN采用NSD2622N驱动电路波形(CH2为低边GaN Vds,CH3为低边GaN Vgs)  简化电路设计,降低系统成本  NSD2622N不仅可以通过直驱方式稳定、可靠驱动GaN,最为重要的是,NSD2622N通过内部集成正负稳压电源,显著减少了外围电路元器件数量,并且采用自举供电方式,极大简化了驱动芯片的供电电路设计并降低系统成本。  以3kW PSU为例,假设两相交错TTP PFC和全桥LLC均采用GaN器件,对两种直驱电路方案的复杂度进行对比:  如果采用NSI6602VD驱动方案,需要配合相应的隔离电源电路与正负电源稳压电路,意味着每一路半桥的高边驱动都需要一路独立的隔离供电,所以隔离辅助电源的设计较为复杂。鉴于GaN驱动对供电质量要求较高,且PFC和LLC的主功率回路通常分别放置在独立板卡上,因此,往往需要采用两级辅助电源架构,第一级使用宽输入电压范围的器件如flyback生成稳压轨,第二级可以采用开环全桥拓扑提供隔离电源,并进一步稳压生成NSI6602VD所需的正负供电电源,以下为典型供电架构:NSI6602VD驱动方案典型供电架构  如果采用NSD2622N驱动方案,则可以直接通过自举供电的方式来简化辅助电源设计,以下为典型供电架构:NSD2622N驱动方案典型供电架构  将以上两种GaN直驱方案的驱动及供电电路BOM进行对比并汇总在下表,可以看到NSD2622N由于可以采用自举供电,和NSI6602VD的隔离供电方案相比极大减少了整体元器件数量,并降低系统成本;即使采用隔离供电方式,NSD2622N由于内部集成正负稳压电源,相比NSI6602VD外围电路更简化,因此整体元器件数量也更少,系统成本更低。GaN直驱方案的驱动及供电电路BOM对比  适配多种类型GaN,驱动电压灵活调节  纳芯微开发的E-mode GaN驱动芯片NSD2622N,不仅性能强大,还能够适配不同品牌、不同类型(例如电压型和电流型)以及不同耐压等级的GaN器件。举例来说,NSD2622N的输出电压通过反馈电阻可以设定5V~6.5V的驱动电压。这样一来,在搭配不同品牌的GaN时,仅仅通过调节反馈电阻就可以根据GaN特性设定最合适的驱动电压,使不同品牌的GaN都能工作在最优效率点。  除此之外,NSD2622N具备最低200V/ns的SW节点dv/dt抑制能力,提升了GaN开关速度上限;采用更为紧凑的QFN封装以及提供独立的开通、关断输出引脚,从而进一步减小驱动回路并降低寄生电感;提供过温保护功能,使GaN应用更安全。  纳芯微还可提供单通道GaN驱动芯片NSD2012N,采用3mm*3mm QFN封装,并增加了负压调节功能,从而满足更多个性化应用需求。
2025-05-30 09:52 reading:404
纳芯微汽车前灯照明解决方案——重磅新品三连发!
纳芯微车规级绝压传感器NSPAD1N系列拓展压力传感性能边界
  纳芯微近日发布全新 NSPAD1N 系列超小体积绝压传感器,专为车规及多种压力检测应用场景打造。该系列产品具备高精度、低功耗、快速响应和强承压能力,符合AEC-Q100标准,支持模拟和数字多种输出方式,广泛适用于座椅气囊、座椅按摩、汽车ECU气压检测、通机控制器等车规场景,同时兼容工业控制、智能气表等工业及消费应用。  随着汽车逐步演化为集舒适与智能于一体的“移动第三生活空间”, 座椅作为关键交互部件,正经历从基础支撑向智能舒适系统的转型。座椅气囊和按摩功能也日益成为提升驾乘体验与安全性能的重要配置。  针对这一趋势,NSPAD1N系列采用高精度信号调理芯片,对MEMS芯体输出进行校准和温度补偿,支持10kPa至400kPa压力范围内的模拟输出(0~5V)及数字输出(I2C/SPI),灵活适配多种应用需求。  该系列采用3mm x3mm DFN-8的小型封装,并配备可润湿侧翼设计(wettable flank),满足车规电子小型化布板需求,支持AOI自动焊接检测。其创新的MIS基板方案,有效规避传统LGA-FR4方案在温度循环下的分层风险,显著提升在高低温交变环境下的结构稳定性。  此外,传感器正面采用四小孔进气结构,在确保气流通畅的同时形成物理屏障,有效防止异物侵入芯片腔体,提升环境适应性。  NSPAD1N系列还具备高转换速度、低功耗以及强过载与耐爆压力能力,在复杂工况下依然保持高度稳定与可靠。  产品特性  高精度、低功耗  高度线性,100%温度补偿,无需校准;全寿命精度优于±1%F.S.(-20℃~115℃),工作电流<3mA。  多种输出方式  支持模拟(绝对压力输出)与数字(I2C/SPI)信号,适配性强,便于集成。  量程与输出灵活定制  10kPa~400kPa范围可调,支持定制供电电压和输出方式,覆盖多样应用需求。  小型化封装  3mm x 3mm DFN-8车规封装,外围电路精简,助力小型化设计与系统优化。  车规级可靠性  符合AEC-Q100标准,可承受600kPa过载与800kPa爆破压力,确保在严苛环境下的稳定运行。  依托自主可控的MEMS设计与封装工艺,以及多压力温度点自动化批量标定能力,纳芯微为客户提供稳定高效的交付保障,降低供应链风险。同时支持定制化MEMS晶圆和合封产品开发,灵活应对多元应用场景。
2025-05-23 11:36 reading:356
从运动到感知,纳芯微磁传感器为人形机器人赋能
  纳芯微磁传感器技术为人形机器人运动控制提供了关键解决方案,其高精度磁角度编码器可精准检测关节位置和运动轨迹,赋予机器人更灵敏的感知能力和更流畅的运动表现。相关技术突破将推动人形机器人在通用关节和执行器等核心部件上的性能提升,为智能机器人产业发展注入新动能。  随着人形机器人技术的快速发展和市场化进程加速,其应用场景正从工业领域向消费级市场拓展。纳芯微凭借广泛的产品线布局,在这一新兴市场中占据了重要地位,其产品涵盖MCU、传感器(电流、电压、温度、位置)、栅极驱动、缓冲器、电池管理,以及通信、功放、监控和基准等芯片解决方案,能够为机器人系统提供完整的信号链支持。  纳芯微技术市场经理陈旭骅在2025CAIMRS AI+人形机器人研讨会上介绍,从当前主流人形机器人的结构来看,单台设备平均需配备71个磁编码器和90个电流传感器,具体需求拆解如下:  机械臂(自由臂):以七自由度机械臂为例,其7个关节每个关节的减速机前后均需1个编码器,单臂需14个磁角度传感器来实现电机运行及末端位置检测,双臂合计28个。同时需配套14个驱动器和28个电流传感器。  腿部和腰部关节:按四自由度保守计算,各需16个磁编码器;若包含腰部旋转和弯腰动作,则要额外增加4个磁编码器,总计20个。部分高端设计采用六自由度方案,进一步推升了传感器需求。  膝关节:针对爆发力要求高的跑跳动作,定制化膝关节动力电机通常配备4个磁编码器(每膝2个)。  灵巧手:目前国内外方案差异较大,海外有些灵巧手能实现十六、二十二自由度。国内市场比较常见的是6个空心杯为主的结构。拇指关节是一个二自由度结构,需要3个角度编码器(1个/空心杯电机+末端检测);四指关节基本上以4个空心杯电机为主,每指2关节配备2个末端位置检测编码器,总计12个。手腕类似腰部旋转结构,需额外的编码器支持。  电池管理方面:主流200A电池组需配置2个高精度电流传感器。视觉执行机构方案多样,通常需2-4个磁编码器实现精准定位。  纳芯微高精度与高可靠性传感方案  在角度传感领域,编码器技术经历了从电位器到光电、磁角度及电感式编码器的演进。目前,纳芯微聚焦于磁角度编码器和电感式编码器的研发与量产,其中磁角度编码器已广泛应用于工业及消费领域,而电感式编码器则在汽车EPS(电动助力转向系统)、扭矩传感等场景中展现优势。  纳芯微磁角度编码器采用非接触式设计,具备高可靠性、抗震、抗污染等特性,尤其适合动态环境。传统光电编码器对环境洁净度要求高,而人形机器人的跌落、碰撞等动作易导致其失效。相比之下,磁角度编码器不仅适应性强,还可实现17bit分辨率(精度达0.002°),且仅需单芯片+磁铁的简洁方案即可完成高精度检测,大幅降低系统复杂度。  纳芯微的磁编码器主要有三种不同的技术路线,可以覆盖全场景需求。首先是低成本的霍尔式磁编码器方案,适用于空心杯电机等对性价比敏感的场景。第二是AMR磁阻式编码器,具有高灵敏度,分辨率可达21bit,主要用于工控市场和机器人中的伺服电机,以及配合机器人行星减速机的多颗协同控制方案。第三是新兴的电感式编码器方案,适合中空走线或大电流场景(避免磁场干扰),目前已进入小批量阶段,未来将拓展至人形机器人关节等应用。  总之,纳芯微通过多技术路径布局,为不同精度、成本及环境要求的场景提供定制化解决方案,持续推动编码器技术在机器人领域的创新应用。  纳芯微磁编码器安装方式详解  磁编码器的安装方式主要分为在轴安装和离轴安装两大类。在轴安装是指电机轴、磁铁轴心和芯片轴心三轴同心的安装方式,它具有结构简单、精度稳定的特点。而离轴安装则是当前行业研究的热点,特别适用于需要中空结构的减速器应用场景,为人形机器人等新兴领域提供了更为灵活的解决方案。针对这两种安装方式,纳芯微开发了不同的产品系列,以满足多样化需求。  目前纳芯微有三款在轴安装磁编码器产品:MT6835(±0.02°)、MT6826S(±0.1°)和MT6701(±1.0°)。这三款产品的年出货量已达到500-600万片,广泛应用于步进电机和伺服电机领域。其中MT6701主要应用于空心杯电机等对成本敏感的场景;MT6826S和MT6835基于磁阻技术,凭借更高精度被用于伺服电机和行星减速机的多颗协同控制方案。  关于安装技术细节,在轴安装又可分为径向充磁和轴向充磁两种方案。径向充磁方案磁场发散较远,对安装距离要求较低;轴向充磁方案磁力线更为集中,适合1mm以内的精密安装场景,是纳芯微主推的方案。  离轴安装是一种创新方案,针对机器人行业对中空结构的需求,纳芯微提供三种离轴解决方案。一是集成磁头方案(MT6620),优势是集成度高,挑战是对磁铁的磁间距和安装位置要求较高;二是低成本方案(MT6709QC),其特点是通过外接磁传感器解码,通过自校准可将精度提升至±0.1°(匀速自校准)或±0.2°(简洁校准)。  第三种是电感式编码器方案(MT6901),其创新性在于,采用电感技术解决了中空走线干扰问题,能够有效规避EMC等信号干扰。这种双码道游标方案是当前市场主流的绝对值编码器,可广泛应用在机器人关节侧。  为了满足绝对位置的监测需求,纳芯微还推出了两种创新方案——单码道增量控制和M序列方案。单码道增量控制采用单磁环设计,通过中间的回零信号实现位置识别。该方案采用增量控制方式,虽然存在上电时存在噪声问题,但在工业场景中仍有广泛应用。  M序列方案则更为先进,融合光编理论创新而成。其工作原理是通过伪随机序列精确定位外圈对极位置,结合增量控制实现360°绝对角度测量。具体流程为:上电时读取内码道信号确定初始位置,然后通过增量方式进行机械控制,由芯片内部解析获得绝对角度信息。  上述两种方案各有特点:传统方案结构简单但存在噪声;M序列方案精度更高但增加了复杂度。两者均能有效满足绝对位置监测需求,可为不同应用场景提供灵活选择。  为满足不同精度需求,纳芯微开发了多种复合安装方案。其中,基础复合方案采用中间轴向充磁的在轴安装,外圈采用4颗传感器解码,特点是平衡成本与性能。高精度复合方案增加了中间磁铁屏蔽罩,能够有效隔离外部磁场干扰,提升测量精度。  纳芯微还在两个方案基础上开发了两种全中空离轴方案。其外部磁环随外转子旋转,内部磁环连接减速器电机端,采用8颗线性霍尔输出信号至解码芯片。通过增加磁屏蔽设计,其外圈精度可达0.2-0.3°,内圈精度可达0.8-1°。该方案的可靠性已在行业实际应用中得到了验证,完美解决了中空结构下的高精度测量需求。  纳芯微即将推出的MT6901电感式编码器将成为人形机器人关节的核心解决方案。该产品采用创新的三层电感技术,在定子两侧各配置一个转子,通过电磁感应实现双面信号采集,从根本上消除传统方案单侧感应的局限性。  虽然三块PCB的精密平衡存在技术挑战,但这一设计实现了内环套外环的感应方案,能够显著提升测量精度,完美解决中空走线的EMC干扰问题,特别适合需要高可靠性的机器人关节应用,从而推动整个机器人行业的技术升级。  纳芯微将持续拓展智能化边界  纳芯微通过持续技术创新,建立了完整的磁编码器解决方案体系,从传统在轴安装到创新离轴方案,从单一测量到复合安装,为工业自动化、人形机器人等领域提供了多样化的选择。特别是正在开发的MT6901电感式编码器,有望解决行业长期存在的中空走线的干扰难题,推动磁编码器技术进入新的发展阶段。  纳芯微的传感器产品已成功导入多家客户的人形机器人项目,在空心杯电机和通用关节领域实现了批量出货。与此同时,在四足机器人市场也取得了突破,多个项目进入量产阶段。作为国产传感器供应商,纳芯微将持续为机器人行业提供高可靠性解决方案,助力国产人形机器人把握市场机遇,实现技术突破。
2025-05-23 11:36 reading:440
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
model brand To snap up
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code