纳芯微:使用高可靠性隔离放大器NSI1400x进行电流采样电路设计

发布时间:2025-04-07 15:07
作者:AMEYA
来源:纳芯微
阅读量:1323

  在高压工业应用场景中,隔离采样技术能够保护低压电路免受高压电源电路故障的影响,同时确保不同电压域之间维持通信,从而显著提高系统可靠性。

  NSI1400是一款基于纳芯微电容隔离技术的高性能隔离放大器,其输出与输入相互隔离。该产品已广泛应用于分流电流监测、电机驱动、不间断电源、光伏逆变器等多个领域。为了帮助客户简化设计流程,本应用指南介绍了如何根据客户的电流采样需求使用NSI1400。

  1. 典型应用电路

  NSI1400隔离放大器非常适合用于高压应用场景中的分流电阻式电流采样,比如电机驱动。典型的应用电路如图1所示。

  分流电阻Rsense两端的电压通过RC滤波器(RFLT和CFLT)施加到NSI1400的差分输入端。为了实现输入开关电容电路的电荷缓冲(参见2.1节“采用开关电容电路的模拟输入”了解更多详细信息),必须增加大于330pF的滤波电容,并确保其位置尽可能靠近NSI1400,以提升在高噪声应用场景中的性能。

  隔离放大器的差分输出通过基于运算放大器的电路转换为单端模拟输出。建议在OUTP和OUTN引脚上添加大于1kΩ的电阻,以防止输出过流。模数转换器(ADC)通常在后端接收这个单端模拟输出信号,并将其转换为数字信号,以便控制器进行处理。

纳芯微:使用高可靠性隔离放大器NSI1400x进行电流采样电路设计

  2. 输入调理电路

  在NSI1400的应用中,如果输出误差(比如,增益误差或输入失调电压)异常地超出数据表规定的规格,这可能归咎于输入调理电路设计不当。本节将根据NSI1400的开关电容模拟输入电路和抗混叠原理,介绍NSI1400应用的推荐输入调理电路。

  2.1 采用开关电容电路的模拟输入

  作为NSI1200/NSI1300的迭代升级产品,NSI1400在输入架构方面进行了优化,旨在减少由输入偏置电流引起的采样误差。然而,这种架构变化对输入滤波电容的选择提出了新的要求(建议大于330pF)。如果设计不当,可能会导致采样误差增加。为了更好地帮助客户理解,下面将详细解释NSI1400的输入架构。

  NSI1400的模拟输入是基于二阶Σ-Δ调制器的开关电容电路。模拟输入的等效电路如图2所示。内部电容CIND通过周期性开关动作以12MHz的内部时钟频率fCLK连续充放电,实现输入信号数字化。在充电阶段,S1闭合,S2断开,CIND充电至输入差分电压。在放电阶段,S1断开,S2闭合,CIND放电至GND1+0.9V的电压水平。根据等效电路,可以按下面的公式计算输入电阻RIND:

纳芯微:使用高可靠性隔离放大器NSI1400x进行电流采样电路设计

纳芯微:使用高可靠性隔离放大器NSI1400x进行电流采样电路设计

  当电容性负载切换到输入端时,由于电荷重新分配,输入信号幅度会暂时下降。输入源尝试纠正这种情形,同时由于较长输入线路表现出类似电感的特性,这个过程中可能会出现过度振铃现象。为了解决这个问题,每个输入端增加外部电容器可以帮助提供采样过程中产生的电流尖峰。选用容量大于330pF的外部电容器(图1所示CFLT,也作为滤波电容)是提高瞬态电荷供应能力的一种方法。输入电容器应尽可能靠近NSI1400放置,以抑制振荡并确保采样精度。

  2.2 抗混叠原理

  采样系统能够以高精度处理的最高频率信号称为其奈奎斯特极限。采样率必须大于或等于输入信号最高频率的两倍。如果输入信号频率超过奈奎斯特频率,通带中会产生冗余或有害信号,这种现象称为混叠。图3阐明了信号混叠机制。例如,采样率fs为1MHz,采样信号带宽为fs的一半,即500kHz(奈奎斯特频率)。在采样过程中,频率为fin(fin>fs/2)的输入信号会镜像至通带中,成为频率为fs-fin的错误混叠信号。在实际应用场景中,通常设置更高的采样率,以提供一定的裕量并减少滤波需求。

纳芯微:使用高可靠性隔离放大器NSI1400x进行电流采样电路设计

  除了满足输入信号频率低于奈奎斯特极限的要求,采样系统的输入信号通常包含频率超过奈奎斯特频率的高频噪声。这些噪声会混叠到通带成为干扰信号。因此,需要在采样系统输入端设置抗混叠滤波器,从而在采样前滤除高频噪声,避免噪声混叠。选择的滤波器应考虑截止频率可以消除采样输入的高频噪声或至少将其衰减至不会对采样信号产生明显影响的程度。

  NSI1400是一个采样频率为12MHz的采样系统。为了防止混叠到通带内的高频噪声,抗混叠滤波器的截止频率不超过6MHz。

  2.3 输入滤波器设计

  NSI1400的输入调理滤波器设计考虑了电荷缓冲需求、抗混叠、输入信号频率和系统带宽等因素,如图1所示。

  为了满足输入开关电容电路的电荷缓冲需求,滤波电容器的容量需大于330pF。表1列出了在不同输入滤波电容条件下,NSI1400的增益误差测量结果。根据规格书指标,增益误差在±0.3%以内。因此,需要选择容量大于330pF的滤波电容器,而容量大于1nF的滤波电容器更佳。

纳芯微:使用高可靠性隔离放大器NSI1400x进行电流采样电路设计

  针对存在高频干扰应用的抗混叠需求,抗混叠滤波器的截止频率不超过6MHz,如第2.2节所示。

  位于INN和INP引脚之间的电容器用于滤除差分噪声,称为差分电容器Cdiff。位于INN/INP引脚与GND1之间的电容器用于滤除共模噪声,称为共模电容器Ccm。为了减少不同输入引脚的共模电容误差影响,建议Cdiff值至少是Ccm值的10倍。这可以防止由于元件容差导致共模噪声被转换为差分噪声。如果系统的共模噪声在可接受范围内,则无需设置Ccm。客户可以根据自身需求调整滤波器的设计。共模噪声滤波器和差分噪声滤波器的截止频率如下所示:

纳芯微:使用高可靠性隔离放大器NSI1400x进行电流采样电路设计


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
纳芯微推出NSI1611系列隔离电压采样芯片
  纳芯微今日宣布正式推出全新一代隔离电压采样芯片NSI1611系列。作为纳芯微经典产品NSI1311系列的全面升级,NSI1611系列基于其领先的电容隔离技术,在性能与适配性上实现双重突破。  其核心创新在于支持0~4V宽压输入的同时,能够保持1Gohm的高阻输入,可显著提升电压采样的精度与抗干扰能力;同时部分料号亦兼容传统0~2V输入,为客户提供更灵活的器件选择。  NSI1611系列包含差分输出的NSI1611D和单端输出的NSI1611S。其中,差分输出均为固定增益,单端输出则提供固定增益和可调比例增益两类选项,进一步满足不同系统架构与设计需求。  在新能源汽车与工业自动化领域,对高压系统采样提出了“高精度、高灵活度”的严苛要求,隔离电压采样芯片的性能迭代与场景适配能力已成为行业竞争关键。全新NSI1611系列通过创新的宽压+高阻输入与灵活输出配置两大特点,能够同时支持新项目设计与存量平台升级,为新能源汽车主驱逆变器、车载充电机(OBC)等汽车应用,以及伺服、变频器、电机驱动等工业应用带来更优的器件选择。  创新宽压+高阻输入  精度抗扰双重提升  以新能源汽车主驱系统为例,随着其母线电压进一步提升至800V,以及SiC/GaN器件的应用,控制系统对电压采样的精度及抗干扰能力有了更高的要求。  市面上多数隔离电压采样芯片的输入范围为0~2V,而NSI1611创新性地在保持1Gohm高阻输入的同时,将其拓展至0~4V,突破前代及行业同类产品的输入范围限制,带来精度和抗干扰的双重升级,在适配更高母线电压的同时,降低了设计复杂度和开发周期。  抗干扰能力增强:NSI1611采用宽压输入时,参考地的噪声对输入信号的干扰比例直接减半。结合NSI1611内部的电路优化,其芯片EOS能力大幅提升,且EMI可通过CISPR 25 Class 5等级测试,CMTI高达150kV/μs。在新能源汽车主驱、工业变频器等高开关频率的复杂电磁环境中,宽压输入能够保证采样信号更纯净,大大提升了系统运行的稳定性,降低终端应用的失效风险。  采样精度再升级:0~4V的宽压输入范围可扩大分压比,结合优化的信号调理设计,在保持高阻输入的同时显著降低输入误差,让测量数据更接近真实电压值,为系统的精准控制提供可靠数据;在采样误差测试中,相比前代产品NSI1311系列,NSI1611系列凭借更宽的输入范围在系统的低压区域取得了较大的精度优势,在满量程800V母线电压系统中,当输入电压100V时,NSI1611的采样误差相比NSI1311降低超30%,误差低于1.2%。  NSI1611和NSI1311的采样误差随输入电压变化曲线  单端/差分输出灵活选择  简化设计更高效  凭借深刻的系统级理解,NSI1611系列基于前代产品的应用痛点,全新加入单端输出版本,并且提供“固定增益/比例增益”双版本选择,适配多元化的系统配置需求,可帮助客户简化选型和设计:  简化设计、降低BOM成本:NSI1611的单端输出信号可直接接入MCU的ADC接口,彻底省去了传统差分输出方案所必需的后级运放及调理电路,不仅直接降低了BOM成本,还简化了PCB布局与器件选型复杂度,为紧凑型和高功率密度应用提供了更优的解决方案。  增益自适应适配多元需求:比例增益版本(NSI1611S33/NSI1611S50)可通过REFIN引脚进行配置,使输出增益匹配后端ADC的满量程输入范围,最大化利用ADC的动态范围,提升了整体信号链的有效位数与采样精度,进一步满足多元化的高精度测量需求。  同时,NSI1611系列亦保留差分输出版本NSI1611D02,与纳芯微NSI1311完全引脚兼容,客户无需修改PCB即可实现无缝升级或跨品牌替换,显著降低迁移成本。  多项参数优化  性能全面升级  随着系统功率密度的提升,对器件耐压能力、采样精度、EMI性能等提出了更高的要求。NSI1611针对相关关键参数进行了优化,在全面升级器件可靠性和性能的同时,亦优化了器件成本,为客户提供“性能-成本-可靠性”兼得的选择。  车规级可靠性保障:NSI1611系列的车规版本满足AEC-Q100 Grade 1要求,工作温度覆盖-40℃~125℃,隔离耐压高达5700Vrms,最大浪涌隔离耐压Viosm达10kV,适配汽车高温高压严苛环境,可在极端场景下确保隔离的可靠性。  精度参数全面进阶:NSI1611系列的输入偏置电压Vos(Offset Voltage)指标优化至±0.8mV,相较于前代NSI1311同规格产品的±1.5mV,精度表现实现巨大提升;此外,增益温漂(Gain Drift)从前代的45ppm/℃优化至40ppm/℃,全温区精度稳定性进一步提升;非线性误差、温漂(Offset Drift)维持在行业优异水平,有效加快了系统开发的标定流程;同时,NSI1611系列的采样带宽达到330kHz,适配SiC和GaN等新一代高频开关器件控制,满足高动态响应需求。  功耗优化更节能:相比前代产品,NSI1611系列功耗表现进一步优化,助力终端产品降低能耗。对比前代,NSI1611的Idd1由11.4mA降低至7.2mA,Idd2由6.3mA降低至4.7mA(均为典型值Typ.),NSI1611系列的整体综合功耗下降约33%,可助力客户打造更节能的汽车电子系统,提高新能源汽车的续航里程。  EMI表现更优异:NSI1611基于时钟信号隔离通道复用技术,大幅优化了EMI表现。在200MHz到1000MHz频段的EMI测试中,NSI1611的辐射发射(RE)指标在水平方向和垂直方向均保持10dB以上裕度(3dB~6dB裕度即可满足工程需求),可轻松通过CISPR 25 Class 5认证。面对汽车主驱、OBC等复杂电磁环境,可以减小对系统其他部件的电磁干扰,有效减少系统电磁兼容整改工作量,加快产品上市进度。  封装和选型  NSI1611系列选型表  丰富的“隔离+”产品  满足多元化应用需求  凭借在隔离技术方面的积累和领先优势,纳芯微提供涵盖数字隔离器、隔离采样、隔离接口、隔离电源、隔离驱动等一系列 “隔离+”产品。纳芯微正以全生态“隔离+”产品矩阵,为高压系统筑造安全可靠的防线:  “+”代表增强安全:纳芯微“隔离+”产品提供超越基本隔离标准的安全等级,为客户系统构筑更坚固的高低压安全边界。  “+”代表全产品生态:纳芯微以成熟的电容隔离技术IP为核心,拓展出包括数字隔离器、隔离采样、隔离接口、隔离电源、隔离驱动等完整产品组合,为客户提供隔离器件的一站式解决方案。  “+”代表深度赋能应用:纳芯微“隔离+”产品可满足电动汽车高压平台、大功率光储充系统,以及高集成、高效率AI服务器电源等场景的核心需求,实现系统级安全、可靠与高效。
2025-12-17 16:06 阅读量:315
纳芯微“隔离+”再获权威认可|两款车规芯片斩获中国汽车芯片创新成果奖
纳芯微成功登陆港交所!
  2025年12月8日,国内模拟芯片设计企业苏州纳芯微电子股份有限公司(以下简称“纳芯微”)正式在香港联合交易所主板挂牌上市,成功构建“A+H”双资本平台,标志着公司全球化战略迈入全新阶段。  此次上市,纳芯微全球共发售1906.84万股H股,发行价最终确定为116.00港元/股,市值187.45亿港元。按此计算,公司通过本次上市预计募集资金净额约为20.96亿港元。  本次IPO的亮点之一是引入了阵容强大的基石投资者。比亚迪、小米集团等7家知名产业及投资机构共同认购了总额约10.89亿港元的股份,占本次发售股份总数的近一半。  尤其值得注意的是,基石投资者之一的“元禾纳芯”其最终出资方包含国家集成电路产业投资基金三期,这使得纳芯微成为模拟芯片领域首家获得“大基金三期”基石投资的企业。  纳芯微成立于2013年,采用fabless模式运营,专注于芯片研发和设计,同时将晶圆制造外包予外部晶圆厂以及大部分封装测试外包予第三方封装测试服务供应商。集团围绕汽车电子、泛能源及消费电子等应用领域,提供丰富、高性能、高可靠性的产品及解决方案。根据弗若斯特沙利文的资料,以2024年模拟芯片收入计,纳芯微在中国模拟芯片市场的所有模拟芯片公司中位列第14名(占市场份额0.9%)以及在中国模拟芯片公司中位列第五名。  作为中国少数在传感器、信号链、电源管理三大核心领域均实现深度布局的企业,纳芯微凭借体系化技术平台与产品矩阵,在汽车电子、泛能源、智能终端等关键赛道建立领先优势,从“中国模拟芯片标杆”加速迈向“全球优选供应商”。  纳芯微创始人、董事长、CEO 王升杨表示,港股上市不仅是一次业务发展的里程碑,更是公司全球叙事的起点。公司将以此次上市为锚,持续加大底层技术投入、扩展产品组合、完善海外销售与市场体系,并推动全球化运营能力跃升,为客户与合作伙伴提供长期价值。
2025-12-08 15:59 阅读量:341
纳芯微 | SPI 隔离通信实战避坑:数字隔离器输出并联电平异常的原因与解决方案
  在工业系统 SPI 一主多从通信架构中,为节省 IO 资源,数字隔离器输出通道并联复用是常见设计,但实际应用中极易出现电平无法正常拉高 / 拉低的异常问题,严重影响通信稳定性。本文先梳理工业系统主流通信方式及 SPI 隔离的应用场景,深入剖析数字隔离器输出并联导致电平异常的核心原因,再针对性给出两种经实测验证的解决方案(CS 反向使能电路、二极管反向阻断配合软件配置),并明确实施过程中的关键注意事项,为工程师解决同类 SPI 隔离通信问题提供直接参考。  01 工业系统常见通信方式  通信接口是硬件系统中实现数据交换的核心模块,常分为内部通信接口(板级通信)、外部通信接口(对外通信),如图1,不同接口在速率、距离、复杂度等方面各有特点,是纳芯微产品主要的应用场景之一。图1 板级通信和对外通信  板级通信  板级通信为设备内部组件间的通信,通常具备速度快、距离短的特性,通常具备速度快、距离短的特性,常见有UART、I2C、SPI、单总线等。具体参数如表1所示:表1 板级通信具体参数  对外通信  对外通信为设备级信号传输,用于实现设备间的数据交互,多采用差分传输方式,具备传输距离远的优势,常见类型包括 RS-232、RS-485、CAN 等,具体参数如下表所示:  表2 对外通信具体参数  02 隔离SPI机会点  SPI全称为Serial Peripheral Interface(串行外设接口),由摩托罗拉公司开发的一种同步、全双工、主从式串行通讯总线,可以实现一主多从的通讯连接。  在硬件连接方式上,SPI常用4线制(SCK、MOSI、MISO、CS/SS),各信号线的传输方向及功能描述如下表3所示:表3 SPI各信号线的传输方向及功能  SPI一主多从的通讯拓扑,MOSI、MISO、SCK常采用复用接口,节省IO资源,通过独立的CS/SS实现从机选择。如图2所示。图2 SPI 一主多从基础拓扑  在工业系统中,MCU高压域与低压域之间需要做通讯隔离,纳芯微隔离器NSI8241W(3正1反)适用于SPI信号隔离。对于一主一从的隔离方式,4通道刚好一对一匹配(3正向通道对应SCK、MOSI、CS/SS,1反向通道对应MISO)。对于一主多从的拓扑架构,同样会复用通道节省IO资源,如图3示例。图3 带数字隔离器的SPI主多从拓扑  03 数字隔离器输出并联问题及解决方案  数字隔离器隔离SPI复用通道实际测试时,会发现复用MISO会出现电平异常,当一路输入高,一路输入低的情况下,MISO不能完全被拉高或者拉低。如图4,两颗8241 Out口复用,输入分别给高、低时,MISO波形。图4 Vdd1=Vdd2=5.25V,IND1高,IND2低 黄色OutD1=蓝色OutD2≈2.5V  数字隔离器Out内部为推挽输出:输入为高时,推挽上管导通,输出高电平;输入为低时,推挽下管导通,输出低电平。当输入一高一低时,就会形成分压回路,造成MISO电平异常,如图5,这显然与SPI中规定MISO复用冲突(当SS拉低使能时,从机输出配置为推挽输出,当SS拉高时,从机输出需配置为高阻态,防止多个输出导致电平冲突)。图5 数字隔离器内部分压回路  查阅NSI8241真值表(如图6所示),当EN拉低时,数字隔离器可以输出高组态,能够满足SPI复用要求。因此我们给出以下电路调整方案,来实现数字隔离器输出口并联复用需求。图6 NSI241真值表  方案1  CS 处增加反向电路,同步使能数字隔离器  在CS处增加反向电路(NPN、PNP、反相器等,需考虑Vce压降)同步使能数字隔离器。CS拉高禁用时,数字隔离器EN拉低禁用,Out复用输出高。  方案2  二极管反向阻断 + 软件配置,实现并联复用  通过二极管进行反向阻断,配合软件配置合理实现数字隔离器输出并联复用。  但需要注意的是:  (1)需添加上下拉电阻,明确默认电平,同时满足信号上升沿、下降沿的时间要求;  (2)需考虑二极管压降对电平幅值的影响,避免因压降导致通信误判;  (3)当一路输出通道由高电平切换至低电平时,受寄生参数影响,可能会短暂通过二极管抽取另一通道电流,需重视由此产生的电压尖峰问题。  结论与建议  在工业 SPI 一主多从隔离通信场景中,数字隔离器输出通道并联复用是节省 IO 资源的常用方案,但因隔离器内部推挽输出结构,直接并联易导致电平异常。本文通过分析异常产生的核心原因,提供了两种经实测验证的解决方案(CS 反向使能电路、二极管反向阻断 + 软件配置),同时明确了实施过程中的关键注意事项。工程师在实际设计中可根据项目需求选择合适方案,规避电平异常问题,保障 SPI 通信的稳定性。  高可靠性四通道数字隔离器NSI824x已通过 UL1577 安全认证,支持3kVrms-8kVrms 多档绝缘电压,同时在低功耗下提供高电磁抗扰度和低辐射。数据速率高达 150Mbps,共模瞬态抗扰度 250kV/μs。支持数字通道方向及输入失电默认输出电平配置,宽电源电压可直接适配多数数字接口,简化电平转换;高系统级 EMC 性能进一步提升使用可靠性与稳定性。
2025-12-05 11:20 阅读量:332
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
型号 品牌 抢购
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码