Commercialized the XRCGB_F_C Series In-vehicle Compact Crystal Unit in 2016 Size
  Murata Manufacturing Co., Ltd. (hereinafter ‘Murata’) commercialized the ‘XRCGB_F_C’ series compact crystal unit (hereinafter ‘this product’) in 2016 size for in-vehicle infotainment (IVI*1) and other automotive applications. Mass production has already begun.  *1In-Vehicle Infotainment (IVI): An automotive function that provides information and entertainment to the driver and passengers through an IT device mounted on the automobile.  Most in-vehicle infotainment systems use 3225 size crystal units. In recent years, the growing demand for enhanced functionality in electronic systems—particularly with the integration of ADAS*2 — has led to an increased reliance on electronic components. This trend necessitates the development of even smaller electronic parts. Simultaneously, communications standards for in-vehicle systems are also advancing, which results in an intense wireless traffic of these individual devices. Under these circumstances, signal transmission timing must be accurately synchronized between in-vehicle device ICs in order to correctly receive electric signals on frequencies defined by different communications standards and avoid inter-IC communication errors. This therefore requires high-precision timing devices that generate stable clock signals.*3  *2ADAS: Advanced Driver Assistance System.  *3Clock signals: Signals transmitted at a stable cycle with certain intervals.  To respond to this need, Murata developed this 2016-size product for in-vehicle applications, achieving both smaller size and higher precision thanks to our original packaging technique and design and process optimization. Compared to the 3225 size, the new product achieves about 60% reduction in implementation space, contributing to downsizing the device itself while offering enhanced functionality. This product also features powerful cracking resistance while soldering and is preferred by many customers for in-vehicle applications.  We will continue to help bring safety and reliability to customers by expanding the use of highly reliable and high-performance crystal units.  Product characteristics  Compact 2016 size  High precision  Operating temperature 105°C guaranteed  High resistance to cracks while soldering  Highly reliable with a low failure rate (particle-less)  Stable supply  Lead-free
Key word:
Release time:2025-07-23 13:16 reading:208 Continue reading>>
SIMCom Strengthens Japan Market Presence with SIM7672JP Certifications
  SIMCom, a global leader in IoT communication solutions, announces that its SIM7672JP—powered by the Qualcomm® 216 LTE IoT modem—has successfully obtained key certifications for the Japanese market, including JATE, TELEC, and NTT Docomo Technical Approval (TA). Certification with KDDI is currently ongoing.  These approvals mark a significant step in SIMCom's strategic expansion into Japan, one of the world’s most advanced and regulated IoT markets.  Designed to meet Japan's stringent regulatory and operator requirements, the SIM7672JP offers reliable and cost-effective LTE Cat.1 bis connectivity tailored for a wide range of IoT applications. It has already been validated by IIJ (Internet Initiative Japan) and is compatible with the NTT Docomo network, ensuring strong local integration.  With support for Power Saving Mode (PSM), the SIM7672JP enables long-term, low-power deployments—making it an ideal solution for diverse sectors such as automotive and transport (fleet management, UBI, DVR, public safety), energy and industrial (smart grids, industrial equipment, rugged tablets, infrastructure, pipeline monitoring), consumer and enterprise (payment systems, POS, networking, retail, surveillance), and residential and healthcare (home automation, security, wearables, remote medical devices).  The SIM7672JP is now in mass production and available for Japanese market. With the latest Japanese certifications, SIMCom is well-positioned to deepen its collaboration with local partners and accelerate the deployment of reliable cellular IoT solutions throughout Japan. SIMCom remains committed to empowering the Japanese IoT ecosystem—with certified, future-proof LTE Cat.1 bis modules that deliver connectivity, efficiency, and compliance.
Key word:
Release time:2025-07-21 14:44 reading:291 Continue reading>>
Fibocom Unveils the First LTE Cat.1 bis Module L610-IN with IRNSS and NAVIC for India
  Fibocom (Stock code:300638), a global leading provider of AIoT solutions and wireless communication modules, launched the L610-IN, the first LTE Cat.1 bis module that supports dual-mode, dual-frequency positioning technology with IRNSS (Indian Regional Navigation Satellite System) and NAVIC. With its precise positioning capabilities, high compatibility, and adaptability to various IoT scenarios, the L610-IN provides an efficient and cost-effective connectivity solution for the Indian IoT market. It fully complies with the AIS140 standard, empowering intelligent transformation in key sectors such as fleet management and electronic toll collection (eToll).  The L610-IN integrates innovative IRNSS and NAVIC dual-mode, dual-frequency positioning functionality, significantly enhancing positioning accuracy and stability in India and neighboring regions. It effectively addresses the challenge of insufficient navigation signal coverage in complex environments. The module strictly adheres to the AIS140 regulations in India, ensuring compliance for applications like vehicle tracking and eToll collection, making it the ideal communication solution for smart transportation and logistics industries.  The L610-IN features a compact LCC+LGA package with dimensions of 31mm x 28mm and is pin-to-pin compatible with Fibocom's LTE Cat.4 modules NL668/L716. This design enables customers to seamlessly transition between communication technologies while minimizing hardware modification costs. Supporting LTE/GSM networks, the module is ideal for mid-to-low-speed applications such as smart payment, shared economy, industrial IoT, asset tracking, and aftermarket automotive solutions. With additional features like VoLTE HD voice, camera support, LCD display, and multiple sensor interfaces (USB/UART/SPI/I2C/SDIO), the L610-IN delivers flexible and secure end-to-end connectivity for industry clients.  In addition to the L610-IN for the Indian market, Fibocom has also introduced the L610-EU for Europe and the L610-LA for Latin America, covering major global operator frequency bands. These variants cater to seamless positioning and long-distance communication needs, further expanding the boundaries of smart city and intelligent tracking applications.  The L610-IN is expected to begin CS in Q2 2025. With its high cost-efficiency and localized service capabilities, the module will accelerate the development of India's IoT ecosystem.  Ragin Kallanmar Thodikai, Country Sales Manager of India at Fibocom, stated:  "The launch of the L610-IN bridges the gap in the Indian market for high-precision Cat.1 bis modules while simplifying customer upgrades through technology compatibility, accelerating the global deployment of mid-to-low-speed IoT solutions."
Key word:
Release time:2025-07-17 16:25 reading:304 Continue reading>>
Renesas Debuts Best-in-Class MCUs Optimized for Single-Motor Applications Including Power Tools, Home Appliances and More
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions,introduced the RA2T1 microcontroller (MCU) group based on the Arm® Cortex®-M23 processor optimized for motor control systems in July9. RA2T1 devices are specifically designed for single-motor applications such as fans, power tools, vacuum cleaners, refrigerators, printers, hair dryers and many more.  Feature Set Optimized for Motor Control  The new RA2T1 devices include a number of features designed to enhance motor control function, specifically in single-motor systems. One of the notable features is a 3-channel S&H function that simultaneously detects the 3-phase current values of Brushless DC (BLDC) motors. This method provides superior control accuracy as opposed to sequential measurement methods. The RA2T1 MCUs also offer complementary Pulse Width Modulation (PWM) function of the timer, which enables automatic insertion of dead time and generation of an asymmetric PWM. This function is optimized for inverter drive, which facilitates control algorithm implementation.  The RA2T1 devices offer safety features that are critical in motor control applications. They provide a Port Output Enable function and a high-speed comparator that work together to quickly shut off the PWM output when an overcurrent is detected. The shutdown state can be selected according to the inverter specifications.  Renesas Leadership in Embedded Processing for Motor Control  Renesas has shipped motor-control specific MCUs for over 20 years. The company ships over 230 million motor control embedded processors per year to thousands of customers worldwide. In addition to multiple RA MCU groups, Renesas offers motor-control specific devices in its 32-bit RX Family, its 16-bit RL78 MCUs and its 64-bit RZ MPUs.  “Customers have trusted Renesas motor control solutions for many years across thousands of systems,” said Daryl Khoo, Vice President of Embedded Processing Marketing Division at Renesas. “The RA2T1 MCUs enhance our leadership in this area with market-leading technology, low-power operation, and legendary Renesas quality and safety standards for single-motor systems.”  Key Features of the RA2T1 Group MCUs  Core: 64 MHz Arm Cortex-M23  Memory: 64KB Flash, 8KB SRAM, 2KB Data Flash  Analog Peripherals: 12-bit ADC with 3-channel Sample and Hold, temperature sensor, internal reference voltage, 2-channel high-speed comparators  System: High-, mid- and low-speed On-chip Oscillators; clock output; power-on reset; voltage detection; data transfer, event link and interrupt controllers; low-power modes  Safety: PWM forced shutdown, SRAM parity error check, ADC self-diagnosis, clock frequency accuracy measurement, illegal memory access detection  Operating Temperature Range: Ta = -40°C to 125°C  Operating Voltage: 1.6V to 5.5V  Packages: 48LQFP, 32-LQFP, 48-QFN, 32-QFN, 24-QFN (4mm x 4mm)  The new RA2T1 Group MCUs are supported by Renesas’ Flexible Software Package (FSP). The FSP enables faster application development by providing all the infrastructure software needed, including multiple RTOS, BSP, peripheral drivers, middleware, connectivity, networking, and security stacks as well as reference software to build complex AI, motor control and cloud solutions. It allows customers to integrate their own legacy code and choice of RTOS with FSP, thus providing full flexibility in application development. Using the FSP will ease migration of motor control designs to other RA Series devices.  Winning Combinations  Renesas has combined the new RA2T1 Group MCUs with numerous compatible devices from its portfolio to offer a wide array of Winning Combinations, including Portable Power Tools, Smart BLDC Ceiling Fan, Cordless Vacuum Cleaner, Cordless Leaf Blower. Winning Combinations are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market. Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly. They can be found at renesas.com/win.  Availability  The RA2T1 Group MCUs are available now, along with the FSP software. The new MCUs are supported in Renesas’ Flexible Motor Control development kit that enables easy evaluation of motor control using permanent magnet synchronous motors (brushless DC motors), and the Renesas Motor Workbench development tool. This development kit offers a common design platform with numerous Renesas motor control MCUs from the RA and RX families, enabling migration of IP across numerous devices. Information on all these offerings is available at renesas.com/RA2T1. Samples and kits can be ordered either on the Renesas website or through distributors.  Renesas MCU Leadership  A world leader in MCUs, Renesas ships more than 3.5 billion units per year, with approximately 50% of shipments serving the automotive industry, and the remainder supporting industrial and Internet of Things applications as well as data center and communications infrastructure. Renesas has the broadest portfolio of 8-, 16- and 32-bit devices, delivering unmatched quality and efficiency with exceptional performance. As a trusted supplier, Renesas has decades of experience designing smart, secure MCUs, backed by a dual-source production model, the industry’s most advanced MCU process technology and a vast network of more than 250 ecosystem partners. For more information about Renesas MCUs, visit renesas.com/MCUs.
Key word:
Release time:2025-07-14 14:38 reading:356 Continue reading>>
NOVOSENSE Launches High-Performance 2-Wire Hall Switch MT72xx Series: Compact Design with System-Level Reliability
  NOVOSENSE Microelectronics ("NOVOSENSE") has launched the MT72xx series, 2-wire current output Hall switches. The switches feature superior EMC performance, multiple sensing polarity options, and highly integrated design, achieving ASIL-A functional safety certification and full compliance with AEC-Q100 Grade 0 standards. Designed for long-wiring scenarios in vehicle body electronics and domain controller systems, the MT72xx series provides optimized solutions for seatbelt buckle detection, window lift motor control, and other automotive applications.  Addressing Long Wiring Harness Challenges in Automotive  With rapid advancement of automotive intelligence and electrification, increasingly complex vehicle body functions and highly integrated domain controllers have significantly extended wiring harnesses between sensors and control units. This introduces critical challenges including elevated signal interference risks, increased costs, and compromised system reliability.  NOVOSENSE's MT72xx series delivers robust signal integrity while effectively reducing wiring complexity and lowering harness costs. Designed for long-wiring scenarios such as door lock detection, anti-pinch window control, power tailgate position sensing, seat adjustment, and seatbelt buckle detection, these devices provide stable current output with superior anti-interference capabilities, maintaining signal reliability even in extended wiring conditions.  High Integration & Robustness for Automotive-Grade Standards  Engineered for harsh automotive environments with strong EMI interference, the MT72xx series integrates a 100nF(only TO92S package)capacitor to enhance EMC/ESD performance, simplify peripheral configuration, and optimize BOM space, enabling flexible system architecture design. Compliant with AEC-Q100 Grade 0, the devices ensure long-term stability under extreme high-temperature conditions.  Featuring multiple sensing polarity options (unipolar, omnipolar, latch) and adjustable sensitivity thresholds, the MT72xx series offers design flexibility to accommodate diverse magnet solutions and vehicle architectures, streamlining development and debugging processes.  Comprehensive Resources to Accelerate Time-to-Market  To expedite customer development, NOVOSENSEN provides dedicated MT72xx demo boards and magnetic simulation services. These resources enable rapid device validation, magnet solution matching, and cost-effective debugging, significantly shortening product deployment cycles.
Key word:
Release time:2025-07-14 14:25 reading:358 Continue reading>>
GigaDevice GD32C231 Series MCU — Redefining Cost-Performance, Unleashing New Potential
  GigaDevice, a leading semiconductor company specializing in Flash memory, 32-bit microcontrollers (MCUs), sensors, and analog products, today officially launched the value-packed GD32C231 series of entry-level microcontrollers, further expanding its Arm® Cortex®-M23 core product lineup. As the leader in China's largest Arm® MCU market, GigaDevice positions the GD32C231 series as a "high-performance entry-level" solution designed to offer more competitive options for applications including small home appliances, BMS (Battery Management Systems), small-screen display devices, handheld consumer products, industrial auxiliary controls, and automotive aftermarket systems.  With over 2 billion cumulative MCU shipments and a mature supply chain, GigaDevice's newly launched GD32C231 series overcomes the performance limitations of traditional entry-level chips through innovative design. The series not only integrates a rich set of peripherals but also adopts an industrial-grade wide-voltage process and offers a comprehensive ecosystem. While maintaining exceptional cost-effectiveness, this affordable MCU supports more complex application scenarios, redefining value standards in the entry-level MCU market and ushering in a new era of "affordable yet high-spec" solutions.  GD32C231 Series MCUs: The Ultimate Choice for Cost-Effectiveness  The GD32C231 series MCUs deliver a significant upgrade in computing performance and peripheral features while maintaining excellent price competitiveness, achieving an ultra-high cost-performance balance. Built on Arm's advanced Cortex®-M23 core architecture, the series offers up to 10% higher performance than Cortex®-M0+, with clock speeds reaching 48MHz. It supports efficient processing capabilities such as integer division, greatly enhancing software execution efficiency.  In terms of memory configuration, the series features 32KB to 64KB of highly reliable embedded Flash and 12KB of low-power SRAM, with full memory areas equipped with ECC error correction. To meet the demands of diverse applications, multiple package options are available, including TSSOP20/LGA20, QFN28, LQFP32/QFN32, and LQFP48/QFN48. Thanks to its highly integrated chip design, the series effectively reduces the number of external components, providing users with a bill-of-materials (BOM) cost-optimized solution.  The Perfect Balance of Wide Voltage Support, Low Power, and Fast Wake-up Time  The GD32C231 series delivers exceptional power flexibility and energy efficiency, supporting a wide operating voltage range from 1.8V to 5.5V and a broad temperature range from -40°C to 105°C. This makes it highly adaptable for deployment in harsh and demanding environments. Featuring multiple power management modes, the device consumes as little as 5μA in deep sleep mode and offers ultra-fast 2.6μs wake-up time - achieving an optimal balance between low power consumption and real-time performance. These capabilities make the GD32C231 ideal for battery-powered and portable applications.  Reliable Operation for Safety-Critical Applications  Engineered for reliability, the GD32C231 provides robust ESD protection - meeting 8kV contact discharge and 15kV air discharge standards. Full ECC error correction is applied across Flash and SRAM memory, helping to prevent data corruption. An integrated hardware CRC module further enhances data transmission integrity. These features ensure the MCU performs reliably in safety-critical environments such as industrial automation and automotive electronics.  Highly Integrated Peripherals for Flexible Design  The GD32C231 series integrates a comprehensive set of peripherals, significantly enhancing system integration and design flexibility:  A 12-bit ADC with 13 external channels and 2 internal comparators for precise analog signal measurement.  Up to 4 general-purpose 16-bit timers and 1 advanced 16-bit timer for versatile time-based operations.  2 high-speed SPI interfaces (including quad QSPI at 24Mbps), 2 I²C interfaces (supporting Fast Mode+ at 1Mbit/s), and 3 UARTs (up to 6Mbps) for robust serial communication.  An integrated 3-channel DMA controller and 1 I²S interface for efficient peripheral data handling.  With support for up to 45 GPIOs in a 48-pin package, the GD32C231 offers excellent expandability for complex designs. These rich peripheral resources empower the MCU to meet the demands of a wide range of applications - from consumer electronics to industrial control systems - with ease and reliability.  Full-Stack Ecosystem Support for Efficient Development  The GD32C231 series is backed by a comprehensive development ecosystem designed to accelerate product design and time-to-market. Standard software libraries and resources are readily available on GigaDevice's official website.  To support developers throughout the entire development cycle, GigaDevice provides extensive documentation, including datasheets, user manuals, hardware design guidelines, application notes, and porting references - enabling rapid onboarding for both hardware and software development. A complete SDK firmware package is also offered, featuring rich sample code and development board resources that cover everything from low-level drivers to advanced applications.  The GD32 MCU family natively supports FreeRTOS, offering developers a lightweight, open-source, and high-efficiency real-time operating system. To streamline development even further, GigaDevice offers the GD32 Embedded Builder IDE - its proprietary development environment that integrates graphical configuration and intelligent code generation, reducing design complexity. The GD32 All-In-One Programmer supports essential Flash operations such as programming, erasing, reading, and option byte configuration. Meanwhile, the GD-Link debugger provides dual-mode SWD/JTAG support with plug-and-play functionality for a seamless debugging experience. GigaDevice also collaborates closely with third-party programming tool providers to offer customers a wide range of programming and debugging options.  Additionally, the GD32C231 series is fully compatible with major international toolchains including Arm® Keil, IAR Embedded Workbench, and SEGGER Embedded Studio, ensuring flexibility across various development platforms. For typical use cases, GigaDevice provides robust application solutions and reference designs - helping developers shorten design cycles, simplify product validation, and accelerate the path to mass production.
Key word:
Release time:2025-07-10 14:22 reading:406 Continue reading>>
Murata Unveils First High-Frequency XBAR Filter for Next-Gen Networks
  Murata Manufacturing Co., Ltd. has announced the mass production and commercial shipment of the world’s first*1 high-frequency filter using XBAR technology*2. Developed by combining Murata’s proprietary Surface Acoustic Wave (SAW) filter expertise with XBAR technology from Murata's subsidiary Resonant Inc., it enables the extraction of desired signals while achieving both low insertion loss and high attenuation. These features are critical for the latest wireless technologies, including 5G, Wi-Fi 6E, Wi-Fi 7, and emerging 6G technologies.  The demand for reliable high-frequency communications continues to grow in response to the widespread deployment of 5G and the future development of 6G. Simultaneously, wireless local-area network (WLAN) standards such as Wi-Fi 6E and Wi-Fi 7 are expanding into higher frequency domains to accommodate ultra-fast data rates. Filters used in these applications must address key challenges, such as preventing out-of-band interference, maximizing system battery performance, and meeting strict space limitations. Traditional approaches using Low Temperature Co-Fired Ceramic (LTCC) or conventional Bulk Acoustic Wave (BAW) filters often fall short in these performance areas.  Murata’s new XBAR-based filter addresses these limitations by achieving high attenuation performance while maintaining a wide bandwidth and low signal loss. The XBAR structure itself excites bulk acoustic waves using comb-shaped electrodes and a piezoelectric single-crystal thin film, enabling performance beyond the reach of conventional filter structures. It effectively removes high-frequency interference, even in bands above 3 GHz, allowing for clearer signal detection and better performance, contributing to high-speed, high-capacity, and high-quality wireless communication.  Key performance parameters include a passband of 5150–7125 MHz, a typical insertion loss of 2.2 dB, and a typical return loss of 17 dB. Typical attenuation figures are 11 dB at 4800–5000 MHz, 28 dB at 3300–4800 MHz, 27 dB at 7737–8237 MHz, and 26 dB at 10300–14250 MHz.  The new filter is targeted at devices with embedded wireless functionality, including smartphones, wearables, notebook PCs, and communication gateways, offering an optimal balance of performance and cost efficiency. Murata will continue to drive innovation in filter technologies to support the evolution of wireless communications, and expects this architecture to scale further, with future product generations capable of operating effectively in ultra-high frequency bands above 10GHz.  Notes  *1According to Murata research as of July 7, 2025.  *2XBAR technology: Murata’s proprietary filter structure that excites bulk acoustic waves using comb-shaped electrodes and piezoelectric single-crystal thin films.
Key word:
Release time:2025-07-10 14:15 reading:304 Continue reading>>
Murata Begins World’s First Mass Production of 47µF Multilayer Ceramic Capacitor in 0402-inch Size
  Murata Manufacturing Co., Ltd. has begun the world’s first mass production of the 0402-inch size (1.0 × 0.5 mm) multilayer ceramic capacitors (MLCC) with a capacitance of 47µF*. The new product line, available in two variants with different temperature characteristics, is designed to advance MLCC miniaturization and enhance customer system performance.  In recent years, high-performance IT solutions, such as those used in AI servers and data centers, have seen rapid growth. Due to the often high component density demanded by these devices, optimized component placement within limited PCB areas is paramount. As a result, there is increasing demand for capacitors that offer both miniaturization and higher capacitance, along with high reliability under high-temperature conditions caused by heat generated from PCBs and integrated circuits (ICs).  In response to these requirements, Murata has utilized its proprietary technologies in ceramic dielectric layers and internal electrode miniaturization to facilitate the world’s first mass production of this innovative 47µF product in the compact 0402-inch size. Compared to Murata’s conventional 0603-inch size product with the same capacitance, this new capacitor reduces mounting area by approximately 60%. Additionally, it delivers about 2.1 times the capacitance of Murata’s previous 22µF product in the same 0402-inch size.  The MLCC is available in two variants – the X5R (EIA) GRM158R60E476ME01 with an operating temperature range of -55 to +85°C, and the X6S (EIA) GRM158C80E476ME01 with an operating temperature range of -55 to +105°C. The ability to operate in environments up to 105°C, makes the X6S variant well-suited for placement near ICs, thereby contributing to improved device performance and integration. Both devices feature a ±20% tolerance and rated voltage of 2.5Vdc.  Murata is committed to advancing miniaturized capacitors with higher capacitance and improved high-temperature reliability to meet evolving market demands. These innovations not only support the ongoing miniaturization and functional enhancement of electronic devices but also contribute to lower material usage and increased production efficiency per unit, ultimately helping reduce power consumption at Murata’s factories and lessen environmental impact.  For inquiries regarding this product, please contact us.  Notes  *Based on Murata research as of July 9, 2025.
Key word:
Release time:2025-07-10 14:13 reading:331 Continue reading>>
ROHM Develops an Ultra-Compact MOSFET Featuring Industry-Leading* Low ON-Resistance Ideal for Fast Charging Applications
  ROHM has developed a 30V N-channel MOSFET — AW2K21 — in a common-source configuration that achieves an industry-leading ON-resistance of 2.0mΩ (typ.) in a compact 2.0mm × 2.0mm package.  With the rise of compact devices featuring large-capacity batteries, such as smartphones, the need for fast charging functionality to shorten charging times continues to grow. These applications require bidirectional protection to prevent reverse current flow to peripheral ICs and other components when not actively supplying or receiving power. What’s more, fast charging involves high current power transfer, leading smartphone manufacturers to demand stringent specifications for MOSFETs, including a maximum current rating of 20A, breakdown voltage between 28V and 30V, and an ON-resistance of 5mΩ or less. However, meeting these requirements with standard solutions typically necessitates the use of two large low ON-resistance MOSFETs, increasing board space along with mounting complexity.  In response, ROHM developed an ultra-compact low ON-resistance MOSFET optimized for fast high-power charging. The AW2K21 adopts a proprietary structure that enhances cell density while minimizing the ON-resistance per unit chip area. Two MOSFETs are integrated into a single package, allowing a single part to support bidirectional protection applications (commonly required in power supply and charging circuits).  The proprietary structure also places the drain terminal on the top surface, unlike on the backside in standard vertical trench MOS structures. This enables the use of a WLCSP, which achieves a larger chip-to-package area ratio that further reduces ON-resistance per unit area. As a result, the new product not only minimizes power loss but also supports high current operation, making it ideal for high-power fast charging applications despite its ultra-compact size.  For example, in power supply and charging circuits for compact devices, standard solutions typically require two 3.3mm × 3.3mm MOSFETs. In contrast, the AW2K21 can achieve the same functionality with a single 2.0mm × 2.0mm unit, reducing the footprint and ON-resistance by approximately 81% and 33%, respectively. Even compared to similarly sized GaN HEMTs, ON-resistance is decreased by up to 50%, contributing to lower power consumption and increased space savings across a variety of applications.  The AW2K21 is also suitable for use as a unidirectional protection MOSFET in load switch applications, where it maintains the industry’s lowest ON-resistance. At the same time, ROHM is further pushing the limits of miniaturization with the development of an even smaller 1.2mm × 1.2mm model.  Going forward, ROHM remains dedicated to supporting the miniaturization and energy efficiency of electronic systems through compact, high-performance solutions that contribute to the realization of a sustainable society.  Key Product Characteristics  Application Examples  • Smartphones  • VR (Virtual Reality) headsets  • Compact printers  • Tablets     • Wearables           • LCD monitors  • Laptops     • Portable gaming consoles    • Drones  And other applications equipped with fast charging capability.  Terminology  MOSFET (Metal Oxide Semiconductor Field Effect Transistor)  A field-effect transistor (FET) featuring a metal oxide semiconductor structure (the most commonly used type). It consists of three terminals: gate, drain, and source. Applying a voltage to the gate (control terminal) regulates current flow from the drain to the source.  N-channel MOSFETs turn ON when a positive voltage is applied to the gate relative to the source. A common-source configuration MOSFET integrates two transistor elements that share a single source terminal.  ON-Resistance  The resistance between the Drain and Source of a MOSFET when it is in the ON state. A smaller RDS(on) reduces power loss during operation.  Breakdown Voltage  The maximum voltage that can be applied between the drain and source terminals of a MOSFET without causing damage. Exceeding this limit results in dielectric breakdown, potentially leading to device failure or malfunction.  WLCSP (Wafer Level Chip Scale Package)  An ultra-compact package in which terminals and wiring are formed directly on the wafer before separated into individual chips. Unlike general packages where the chips are cut from the wafer and then molded with resin to form terminals, WLCSP allows the package size to match the chip itself, making it possible to further reduce size.  GaN HEMT  GaN (Gallium Nitride) is a compound semiconductor material used in next-generation power devices. It offers superior physical properties over conventional silicon, enabling higher frequency operation with faster switching speeds. HEMT stands for High Electron Mobility Transistor.
Key word:
Release time:2025-07-08 17:04 reading:323 Continue reading>>
Renesas Strengthens Power Leadership with New GaN FETs for High-Density Power Conversion in AI Data Centers, Industrial and Charging Systems
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, introduced three new high-voltage 650V GaN FETs for AI data centers and server power supply systems including the new 800V HVDC architecture, E-mobility charging, UPS battery backup devices, battery energy storage and solar inverters. Designed for multi-kilowatt-class applications, these 4th-generation plus (Gen IV Plus) devices combine high-efficiency GaN technology with a silicon-compatible gate drive input, significantly reducing switching power loss while retaining the operating simplicity of silicon FETs. Offered in TOLT, TO-247 and TOLL package options, the devices give engineers the flexibility to customize their thermal management and board design for specific power architectures.  The new TP65H030G4PRS, TP65H030G4PWS and TP65H030G4PQS devices leverage the robust SuperGaN® platform, a field-proven depletion mode (d-mode) normally-off architecture pioneered by Transphorm, which was acquired by Renesas in June 2024. Based on low-loss d-mode technology, the devices offer superior efficiency over silicon, silicon carbide (SiC), and other GaN offerings. Moreover, they minimize power loss with lower gate charge, output capacitance, crossover loss, and dynamic resistance impact, with a higher 4V threshold voltage, which is not achievable with today’s enhancement mode (e-mode) GaN devices.  Built on a die that is 14 percent smaller than the previous Gen IV platform, the new Gen IV Plus products achieve a lower RDS(on) of 30 milliohms (mΩ), reducing on-resistance by 14 percent and delivering a 20 percent improvement in on-resistance output-capacitance-product figure of merit (FOM). The smaller die size reduces system costs and lowers output capacitance, which results in higher efficiency and power density. These advantages make the Gen IV Plus devices ideal for cost-conscious, thermally demanding applications where high performance, efficiency and small footprint are critical. They are fully compatible with existing designs for easy upgrades, while preserving existing engineering investments.  Available in compact TOLT, TO-247 and TOLL packages, they provide one of the broadest packaging options to accommodate thermal performance and layout optimization for power systems ranging from 1kW to 10kW, and even higher with paralleling. The new surface-mount packages include bottom side (TOLL) and top-side (TOLT) thermal conduction paths for cooler case temperatures, allowing easier device paralleling when higher conduction currents are needed. Further, the commonly used TO-247 package provides customers with higher thermal capability to achieve higher power.  “The rollout of Gen IV Plus GaN devices marks the first major new product milestone since Renesas’ acquisition of Transphorm last year,” said Primit Parikh, Vice President of the GaN Business Division at Renesas. “Future versions will combine the field-proven SuperGaN technology with our drivers and controllers to deliver complete power solutions. Whether used as standalone FETs or integrated into complete system solution designs with Renesas controllers or drivers, these devices will provide a clear path to designing products with higher power density, reduced footprint and better efficiency at a lower total system cost.”  Unique d-mode Normally-off Design for Reliability and Easy Integration  Like previous d-mode GaN products, the new Renesas devices use an integrated low-voltage silicon MOSFET – a unique configuration that achieves seamless normally-off operation while fully capturing the low loss, high efficiency switching benefits of the high- voltage GaN. As they use silicon FETs for the input stage, the SuperGaN FETs are easy to drive with standard off-the-shelf gate drivers rather than specialized drivers that are normally required for e-mode GaN. This compatibility simplifies design and lowers the barrier to GaN adaptation for system developers.  GaN-based switching devices are quickly growing as key technologies for next-generation power semiconductors, fueled by demand from electric vehicles (EVs), inverters, AI data center servers, renewable energy, and industrial power conversion. Compared to SiC and silicon-based semiconductor switching devices, they provide superior efficiency, higher switching frequency and smaller footprints.  Renesas is uniquely positioned in the GaN market with its comprehensive solutions, offering both high- and low-power GaN FETs, unlike many providers whose success in the field has been primarily limited to lower power devices. This diverse portfolio enables Renesas to serve a broader range of applications and customer needs. To date, Renesas has shipped over 20 million GaN devices for high- and low-power applications, representing more than 300 billion hours of field usage.
Key word:
Release time:2025-07-04 15:04 reading:393 Continue reading>>

Turn to

/ 80

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
model brand To snap up
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code