如何选择有效的ESD保护二极管

发布时间:2022-08-15 09:40
作者:Ameya360
来源:网络
阅读量:3291

    随着更新的集成电路(IC) 技术采用更小的几何尺寸和更低的工作电压,新一代便携式产品对静电放电 (ESD)电压的损坏越来越敏感。因此,手机、MP3播放器和数码相机等便携式产品的设计人员必须评估 ESD 保护选项,以确保他们选择的解决方案能够响应当今 IC 不断变化的需求。本文Ameya360电子元器件采购网将解释选择有效 ESD 保护所涉及的关键步骤。

如何选择有效的ESD保护二极管

    ESD 波形

    定义系统级典型 ESD 事件的最常用波形是 IEC61000-4-2 波形,其特点是亚纳秒级上升时间和高电流水平。该波形的规范列出了 4 个级别的 ESD 幅度。大多数设计人员都需要将他们的产品认证到最高级别,即 8kV 接触放电或 15kV 空气放电。在组件级别进行测试时,接触放电测试是最合适的测试,因为空气放电测试在如此小的组件上是不可重复的。

    ESD考虑因素——最近的设计趋势

    ESD 保护器件的目的是将数千伏的 ESD 输入降低到受保护 IC 的安全电压,并将电流从 IC 中分流出去。尽管所需 ESD 波形的输入电压和电流在过去几年中没有发生变化,但保护 IC 所需的安全电压水平已经降低。过去,IC 设计对 ESD 更稳健,可以处理更高的电压,因此选择任何保护二极管就足够了能够满足 IEC61000-4-2 4 级要求。对于更新、更敏感的 IC,当今的设计人员不仅必须确保保护器件能够满足 IEC61000-4-2 4 级标准,而且还要确保器件将 ESD 脉冲钳位在足够低的电压,以确保IC没有损坏。在为给定应用选择最佳保护器件时,设计人员必须考虑 ESD 保护器件将传入的 ESD 事件钳位到多低。

    如何选择最有效的保护解决方案

    保护二极管数据表中的关键直流规格是击穿电压、漏电流和电容。大多数数据表还将说明 IEC61000-4-2 的最大额定值,这表明二极管不会被指定水平的 ESD 脉冲损坏。大多数数据表的问题在于它们没有任何关于高频、高电流瞬态(如 ESD)的钳位电压的信息。与直流相比,在这些类型的瞬态事件中,保护二极管的钳位电压要高得多数据表上指定的电压。然而,很难为 IEC61000-4-2 规范指定钳位电压,因为它旨在成为系统级别的通过/失败规范,而且频率很高。要将这个规范应用于保护器件,不仅要检查保护二极管是通过还是失败,而且还要检查它对 ESD 电压的钳位有多低。

    比较保护二极管钳位电压的最佳方法是在 ESD 事件期间对二极管两端的实际电压波形进行示波器截屏。这是使用测试设置完成的。

    当查看暴露于 IEC61000-4-2 的 ESD 保护设备的电压波形时,通常会出现初始电压尖峰,然后是二次峰值,最终电压将趋于平稳。初始尖峰是由 IEC61000-4-2 波形的初始电流尖峰和测试结构中的电感导致的过冲共同引起的。然而,初始尖峰持续时间很短,这限制了传输到 IC 的能量。保护装置的钳位性能最好显示在初始超调之后的曲线中。次要峰值是主要问题,因为电压波形持续时间更长,从而增加了 IC 将暴露的总能量。在下面的研究中,钳位电压被定义为次级峰值的最大电压。

    基准研究示例

    为了进行公平比较,所选部件应具有相似的封装尺寸和数据表规格。为进行比较而选择的部件是三个 ESD 保护二极管,在比较数据表中的电气特性时,它们被认为可以直接替代。这些器件都是双向 ESD 保护二极管,具有相同的击穿电压 (6.8V)、电容 (15pf) 和封装外形 (1.0 mm x 0.6 mm x 0.4 mm)。本研究选择的产品是 Rohm 的 RSB6.8CS、KEC 的 PG05DBTFC 和 ON Semiconductor 的 ESD9B5.0ST5G。

    在比较上述部件的直流性能时,它们看起来似乎相同。此外,它们都声称符合 IEC61000-4-2 4 级标准,这意味着它们都能承受高达 8 kV 接触的 ESD 冲击。ESD 保护器件确保保护敏感 IC 的关键性能特性不是直流性能,而是直流性能。然而,尽管设备符合 IEC61000-4-2 第 4 级标准很重要,但更重要的是受保护的 IC 能够存活。为确保 IC 在 ESD 事件中存活,保护二极管必须将 ESD 电压钳位到足够低的值,以免 IC 受损。

    为了比较每个器件的钳位性能,我们将对 ESD 事件期间的电压波形进行示波器截图。我们将进行并排测试,保持所有测试条件相同。下面的显示了同一图表上每个二极管对正负 ESD 脉冲的响应。使用的输入脉冲是标准 IEC61000-4-2 4 级触点 (8 kV)。

    当施加 ESD 的大电流条件时,三个保护二极管的性能存在明显差异。与 KEC 和 Rohm 部件(蓝色波形)相比,安森美半导体保护解决方案(黑色波形)为 ESD 脉冲提供了更低的钳位电压。对于正脉冲,ON Semiconductor 部件钳位在 14 V,而 KEC 为 18 V,Rohm 为 23 V。在施加负脉冲期间,三个器件之间的钳位电压差变得更加明显。

    ON Semiconductor 部分的负脉冲钳位电压为 20 V,KEC 部分为 34 V,Rohm 部分为 42 V。在负 ESD 事件期间,这三个器件之间存在明显的区别,其中 KEC 部件的钳位电压比 ON Semiconductor 部件高 70%,而 Rohm 部件的钳位电压是 ON Semiconductor 部件的两倍以上。

   KEC 和 Rohm 产品通过的负脉冲的总电压可能对更容易受到 ESD 损坏的新 IC 设计构成危险。然而,安森美半导体部件在两个方向上都保持低钳位电压,从而将正负 ESD 脉冲的风险降至最低。KEC 和 Rohm 产品通过的负脉冲的总电压可能对更容易受到 ESD 损坏的新 IC 设计构成危险。

    然而,安森美半导体部件在两个方向上都保持低钳位电压,从而将正负 ESD 脉冲的风险降至最低。KEC 和 Rohm 产品通过的负脉冲的总电压可能对更容易受到 ESD 损坏的新 IC 设计构成危险。然而,安森美半导体部件在两个方向上都保持低钳位电压,从而将正负 ESD 脉冲的风险降至最低。

    一个好的保护器件必须对正负 ESD 脉冲进行良好的钳位,以保证最终产品在实际条件下的最高可靠性。双向低钳位电压可确保器件保护最敏感的 IC,从而使设计人员能够利用最新的 IC 技术推动功能和速度的极限。鉴于钳位电压在选择 ESD 保护器件中的重要性日益增加,许多保护公司都在 ESD 保护器件的数据表中提供了 ESD 钳位屏幕截图。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
如何避免二极管过载
  如何避免二极管过载?  二极管作为电路中的基础元件,其过载可能导致性能下降甚至烧毁。以下从选型、安装、保护设计及散热四方面提供实用解决方案:  1.精准选型匹配需求  根据电路特性选择二极管类型:高频电路优先选用肖特基二极管(低反向恢复时间);高压场景采用快恢复二极管;大电流环境需考虑功率二极管。  核对关键参数:正向电流(IF)需预留20%以上余量,反向耐压(VRRM)应高于电路最大电压的1.5倍,避免长期运行在极限值。  2.规范安装降低风险  焊接控制:手工焊接时温度≤260℃,时间<3秒,避免高温导致PN结损伤;自动贴片机需设置预热坡度,防止热冲击。  引脚处理:高频电路中引线长度应<5mm,必要时采用镀金引脚或绞合线降低电感效应;反向安装二极管可能导致极性错误,需严格按丝印标识操作。  3.多级保护限制过流过压  电流限制:串联电阻需按公式R=(Vsupply-Vd)/If计算(Vd为二极管正向压降),例如12V转5V电路中,若If=1A,需串联7Ω电阻;对敏感电路可并联自恢复保险丝(PPTC)实现过流自保护。  电压箝位:并联双向TVS二极管时,其击穿电压应略高于电路工作电压峰值(如12V系统选15V TVS),可抑制ESD或雷电感应脉冲。  4.热管理与布局优化  散热设计:功率二极管必须加装散热片,材料推荐铝合金(导热系数200W/m·K),接触面涂抹导热硅脂(热阻<0.1℃·cm²/W);  PCB布局:高功率二极管周围保留≥2mm禁布区,避免与发热元件(如MOS管)相邻;多二极管并联时采用镜像布局,保证电流均流。  5.电路级预防措施  参数监控:在关键电路中串联采样电阻,通过运放构建过流检测电路,触发后切断电源或启动限流模式;  冗余设计:对不可修复场景(如航空航天),可采用N+1二极管并联备份,单管失效时负载自动分配至健康管。  示例场景:在开关电源设计中,选用600V/10A快恢复二极管,串联1Ω水泥电阻限流,并联1.5KE200CA型TVS管,配合L型散热片(尺寸50×30×10mm),实测在满载40℃环境下连续工作1000小时,壳温稳定在65℃以下,未出现性能衰减。  通过系统化的选型、安装规范及保护设计,可有效延长二极管使用寿命,提升电路可靠性。
2025-06-09 14:21 阅读量:268
高温环境下的MDD肖特基二极管设计 如何避免热失效
  在高温环境下,肖特基二极管(Schottky Diode)以其低正向压降和快速开关特性被广泛应用于电源管理、电机驱动及新能源系统中。然而,由于其PN结被金属-半导体接触结构取代,其温度特性与普通PN结二极管存在显著不同,特别是在高温下,肖特基管的反向漏电流急剧上升,成为热失效的主要隐患。因此,设计人员在高温环境下使用肖特基二极管时,必须充分考虑其热稳定性与散热策略。  首先,识别失效风险是设计的前提。肖特基二极管的反向漏电流随着温度上升呈指数增长,这不仅加剧功率损耗,还可能引发热失控现象。当结温过高,二极管可能出现反向击穿或短路失效,影响整个电源系统稳定性。  其次,合理选型与降额设计至关重要。在器件选型阶段,应考虑实际工作温度下的derating(降额)条件。例如,若器件额定反向电压为60V,在高温应用中建议选择100V或更高耐压等级,以提升安全裕度。此外,选择具有低漏电流、高结温耐受能力(如175℃以上)的工业级或汽车级肖特基产品,也能显著降低热失效风险。  热管理设计是控制结温的关键手段。在PCB布局中,应尽量扩大铜箔面积,加强热传导路径,配合导热硅脂、散热片或热垫片等散热辅助材料。对于功率密集型应用,还可采用DFN、TO-220、DPAK等高散热效率封装,甚至考虑采用多颗器件并联分流,从结构上降低单管热负载。  最后,建议在系统设计中增加热反馈保护机制,如温度感知芯片或热敏电阻,当温度异常上升时自动限流或关断,以避免连续热应力带来的器件损伤。  总之,高温环境下的肖特基二极管应用必须在器件选型、热设计与系统保护上多管齐下。通过精准评估漏电特性、合理降额、优化散热与加入温控保护,才能充分发挥肖特基二极管在高效率整流中的优势,同时保障系统长期稳定运行。
2025-04-17 17:24 阅读量:333
齐纳二极管原理及使用方法介绍
  齐纳二极管(Zener Diode)是一种特殊的二极管,其工作原理主要基于反向击穿效应。当施加到齐纳二极管两端的反向电压超过其“齐纳击穿电压”(也称为反向阻挡电压),器件会开始导通,使得在器件两端形成一个稳定的电压。  1.齐纳二极管的工作原理  在正常工作条件下,齐纳二极管的结构与普通二极管相似。但区别在于齐纳电压(阻断电压)通常设定在比较低的电压水平。当外加反向电压超过额定齐纳电压时,由于击穿效应,齐纳二极管将开始导通,形成一个固定的电压跨接在两端。  2.齐纳二极管的特点  电压稳定性:齐纳二极管可以提供非常稳定的电压输出。  保护电路:常用于稳压和电压限制应用,以保护其他器件免受电压波动的影响。  温度依赖性:齐纳二极管的工作特性受温度影响较小,相对稳定。  反向电流大:齐纳二极管在击穿状态下的反向电流比普通二极管要大。  3.齐纳二极管的使用方法  选取合适的齐纳二极管:根据所需的电压稳定值和功率要求选择合适的齐纳二极管。  正确连接极性:确保正确连接齐纳二极管,通常将其放置在反向电压方向。  合理设计电路:在设计中考虑到齐纳二极管的特性,确保其在工作范围内稳定可靠。  注意散热:对高功率应用,需考虑齐纳二极管的散热,以确保器件工作在可靠的温度范围内。
2024-12-20 13:31 阅读量:596
锗二极管型号及参数 硅管和锗管有什么区别
  锗二极管是一种常用于电子电路中的半导体器件。在选择合适的锗二极管时,了解其型号和参数非常重要。此外,还需要清楚硅管和锗管之间的区别。  1.锗二极管型号及参数  锗二极管的型号通常由制造商根据该器件的特性指定。常见的锗二极管型号包括但不限于:1N34、1N60、OA81等。这些型号具有各自独特的电性能和应用场景。  在选择锗二极管时,关注以下参数至关重要:  最大反向电压(VRM):即锗二极管可承受的最大反向电压值。  最大正向电流(IFM):锗二极管可通过的最大正向电流。  正向压降(VF):锗二极管正向导通时的电压降。  尺寸:锗二极管的物理尺寸对于某些应用也是一个重要考量因素。  2.硅管和锗管的区别  尽管硅管和锗管都是半导体材料,但它们在一些方面存在显著区别:  材料特性:硅管比锗管更普遍,在许多应用中使用。硅管具有较低的功耗和较高的工作温度范围。  电学特性:锗管的导电性能优于硅管,因此在一些特定应用中,如高频应用,锗管可能更适合。  价格和稳定性:通常情况下,硅管比锗管便宜,且具有更好的稳定性和一致性。  反向饱和电压:锗管的反向饱和电压较硅管低,这在一些电路设计中具有优势。  锗二极管作为一种重要的半导体器件,其型号和参数决定了其在电路中的具体应用。在实际选型时需要结合具体需求进行选择。同时,与硅管相比,锗管在电学特性等方面有着明显的差异,合理选择器件能够有效提高电路性能和稳定性。
2024-11-21 11:53 阅读量:910
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
型号 品牌 抢购
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码