Renesas Releases its First Wi-Fi 6 and Wi-Fi/Bluetooth LE Combo MCUs for IoT and Connected Home Applications
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced the RA6W1 dual-band Wi-Fi 6 wireless microcontroller (MCU), along with the RA6W2 MCU that integrates both Wi-Fi 6 and Bluetooth® Low Energy (LE) technologies. These connectivity devices address the growing demand for always-connected, ultra-low-power IoT devices across smart home, industrial, medical and consumer applications. Renesas also launched fully integrated modules that accelerate development with built-in antennas, wireless protocol stacks, and pre-validated RF connectivity.  Ultra Low Power Operation for Always-Connected IoT  Today’s IoT devices must stay always connected to improve application usability and response time, while maintaining the lowest possible power consumption to extend battery life or to meet eco-friendly regulations. Renesas’ Wi-Fi 6 MCUs offer features such as Target Wake Time (TWT), which enables extended sleep times without compromising cloud connectivity and power consumption. This is critical for applications such as environmental sensors, smart locks, thermostats, surveillance cameras, and medical monitors, where real-time control, remote diagnostics and over-the-air (OTA) updates are critical.  Additionally, both MCU Groups are optimized for ultra-low power consumption, consuming as little as 200nA to 4µA in sleep mode and under 50µA in Delivery Traffic Indication Message (DTIM10). With the “sleepy connected” Wi-Fi functionality, these devices stay connected with minimal power draw, meeting the growing requirements of modern energy efficiency standards.  Scalable RA MCU Architecture with Full Software Support  Built on the Arm® Cortex®-M33 CPU core running at 160 MHz with 704 KB of SRAM, the MCUs enable engineers to develop cost-effective, standalone IoT applications using integrated communication interfaces and analog peripherals, without the need for an external MCU. Customers also have the option to design with a host MCU that can be selected from Renesas’ broad RA MCU offerings and attach the RA6W1 and RA6W2 as connectivity and networking add-ons. Both RA6W1 and RA6W2 are designed to work with Renesas’ Flexible Software Package (FSP) and e² studio integrated development environment. As the first Wi-Fi MCUs in the RA portfolio, they offer a scalable platform that supports seamless software reuse across the RA family.  High Performance Dual-Band Wi-Fi 6 with 2.4 and 5 GHz Connectivity  With support for both 2.4 and 5 GHz bands, both MCUs deliver superior throughput, low latency, and reduced power consumption. The dual-band capability dynamically selects the most suitable band based on real-time conditions, ensuring a stable and high-speed connection even in environments with many connected devices. Advanced features such as Orthogonal Frequency Division Multiple Access (OFDMA) and TWT boost performance and energy efficiency, making these solutions well suited for dense urban environments and battery-powered devices.  Robust Security and Matter-Certified Interoperability  The RA6W1 and RA6W2 devices offer advanced built-in security including AES-256 encryption, secure boot, key storage, TRNG, and XiP with on-the-fly decryption to keep data safe from unauthorized access. The RA6W1 is RED certified (Radio Equipment Directive), which makes it easier for developers to future-proof their design. Additionally, the device is Matter ready and certified with Matter 1.4, and is compatible across smart home platforms. Renesas supports both MCUs and modules through the Renesas Product Longevity Program, offering 15-year support for MCUs and 10 years for modules.  “We’re offering our customers the flexibility to design with a standalone Wi-Fi device, a Wi-Fi/Bluetooth LE combo, or fully integrated modules depending on their needs,” said Chandana Pairla, VP of the Connectivity Solutions Division at Renesas. “These wireless solutions save power, simplify system design and lower BOM cost. With hosted or hostless implementation options, customers can confidently begin their wireless onboarding journey and seamlessly integrate into next-generation connected systems.”  Two types of modules, Wi-Fi 6 (RRQ61001) and Wi-Fi/Bluetooth LE combo (RRQ61051) simplify design by integrating certified RF components and wireless connectivity stacks that comply with global network standards. Supported RF certification standards include the U.S. (FCC), Canada (IC), Brazil (ANATEL), Europe (CE/RED), UK (UKCA), Japan (Telec), South Korea (KCC), China (SRRC) and Taiwan (NCC). By integrating connectivity at the system level, the modules significantly reduce design effort and accelerate time to market.  Winning Combinations  Renesas offers “Advanced Low-Power Wireless HMI for Household Appliances” and “Automatic Pet Door & Tracking System” that combine the new Wi-Fi 6 MCU and Wi-Fi/Bluetooth LE MCU with numerous compatible devices from its portfolio to offer a wide array of Winning Combinations. Winning Combinations are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market. Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly. They can be found at renesas.com/win.  Availability  The RA6W1 MCU is now available in FCQFN and WLCSP packages, along with the RRQ61001 and RRQ61051 modules. The RA6W2 MCU (BGA package) will be available in Q1/2026. The devices are supported by the FSP, e² studio, evaluation kit and software development kit (SDK) that include flash memory, PCB trace antennas, connectors and embedded power profiler for power consumption analysis. Renesas also offers comprehensive software tools to aid system application development, as well as the Production Line Tool (PLT) for production testing of wireless MCUs.
Key word:
Release time:2025-12-12 16:28 reading:294 Continue reading>>
ROHM launches RPR-0730: High-Speed, High-Precision Optical Sensor Featuring VCSEL Technology
  ROHM has developed the “RPR-0730”, analog compact optical sensor, capable of high-precision detection of fast-moving objects. This sensor can be widely utilized in consumer and industrial equipment applications, including printers and conveyor systems.  As industrial and office equipment becomes increasingly sophisticated and automated, there is a growing demand for improved sensing technology accuracy. In applications such as label printers, material or product transport systems, and copiers, the need for technology that can identify objects more accurately is essential. Moreover, increased speed driven by productivity improvements makes the introduction of high-speed, high-precision optical sensors crucial.  The RPR-0730 is a compact reflective optical sensor (photo reflector). It employs an infrared VCSEL, which offers higher directionality than LEDs, enabling detection of finer objects. Furthermore, by using a phototransistor with analog output as the receiver, the sensor achieves a response time of 10µs. This dual combination enables high-speed, accurate identification of fine lines as narrow as 0.1mm - previously difficult to detect with conventional LED light sources. As an addition to the existing digital output sensor “RPR-0720” series, RPR-0730 expands capability to applications requiring faster sensing, such as print detection in copiers, label printers, or rotational detection in motors and gears.  The package is ultra-compact at 2.0mm × 1.0mm × 0.55mm and employs a visible light filtering resin to suppress interference from ambient light or sunlight. This enables stable detection even in environments with varying light conditions, such as factories or outdoors. The sensor can also be easily integrated into equipment requiring installation in small, confined spaces, like inside conveyors or precision instruments, making it suitable for a wider range of applications.  Mass production of the new product commenced in October 2025 (sample price: $2.2/unit, tax excluded).  Going forward, ROHM will continue to leverage its development expertise in light-emitting and light-receiving elements to create sensing products that meet customer needs, contributing to the miniaturization and enhanced convenience of various devices.  Application Examples  •Print detection, paper feed/jam detection in label printers, copiers, shredders, etc.  •Object detection of packages/specimens, workpiece position detection in conveyance systems, automatic inspection equipment, etc.  •Motor/gear rotational detection in industrial robots, etc.  Terminology  Photo reflector  A type of optical sensor combining an emitting element and a receiving element. It illuminates an object and detects the intensity of the reflected light to measure the presence or distance of an object.  VCSELL  Abbreviation for Vertical Cavity Surface Emitting LASER. A type of laser light source, it is a semiconductor laser that can emit light directly from its surface. Compared to LEDs, it offers higher directionality and is suitable for high-precision sensing. Originally adopted for optical communication applications, its use as a light source for proximity sensors and distance sensors has been expanding in recent years.  Phototransistor  A transistor-type photoelectric conversion element that converts optical signals into electrical signals. It integrates a photodiode and a transistor, controlling the base current with light to output an amplified collector current.
Key word:
Release time:2025-12-04 17:04 reading:317 Continue reading>>
Murata develops integrated passive device for Semtech’s SX126X family
  Murata Manufacturing Co., Ltd. has developed a new integrated passive device (IPD) for use with the Semtech LoRa Connect™ SX126x family, which includes the SX1261, SX1262, and LLCC68 products. Using a proprietary low-temperature co-fired ceramic (LTCC) process, Murata has successfully replaced a series of discrete matching components of the SX1261/2 reference design with a single 2.00mm x 1.25mm size LTCC component.  The IPD enables SX1261/2 radio designers to optimize for both size and performance using two dedicated parts. The LFB21892MDZ7F957 is optimized for US and European ISM bands, delivering the full output power for the US FCC bands. The LFB21892MDZ7F821 is optimized for Eurocentric designs that need to maximize the efficiency performance.  “The Murata IPD offers the most efficient development path to realizing the full performance of the SX1261/2, featuring a miniaturized form factor that can significantly reduce board space,” says Arthur Kiang, Product Manager, RF Components, Murata. “The reduction in the number of matching components enables lower material costs and simplifies the design process, leading to shorter lead times. This integration also lowers the probability of soldering and manufacturing issues, as there is only one component to monitor in production.”  “Semtech’s LoRa Connect™ SX126x family has become the trusted choice for LoRaWAN® networks and long-range IoT connectivity in applications from smart metering to industrial sensing,” says Carlo Tinella, product marketing director of wireless and sensing products at Semtech. “Murata’s IPD solution demonstrates the strength of our LoRa® ecosystem, helping radio engineers accelerate development while optimizing for both miniaturization and regulatory compliance. This partnership streamlines the path from design to deployment for millions of IoT devices being deployed globally.”  Product samples are currently available, with mass production of the IPD commencing shortly.
Key word:
Release time:2025-11-28 17:33 reading:357 Continue reading>>
ROHM’s Three-Phase Brushless DC Motor Gate Driver Achieving FET Heat Reduction while Suppressing EMI
  ROHM has developed the “BD67871MWV-Z” three-phase brushless DC motor gate driver for medium voltage applications (12 to 48V systems). By incorporating ROHM’s proprietary gate drive technology TriC3™, it greatly reduces FET’s switching loss while maintaining low EMI – traditionally a trade-off in motor driver ICs.  Motors account for approximately 60% of global electricity consumption, making control technology which affects energy efficiency, increasingly critical. In 12V to 48V motor drive applications, a simple configuration where an MCU controls three gate drivers has been the mainstream. However, in recent years, demands for high efficiency and precise control have grown, accelerating the adoption of solutions combining an MCU with an integrated three-phase motor driver. Further, a technical challenge in three-phase motor drivers has been the trade-off between “power consumption reduction” and “noise / EMI (electro-magnetic interference) reduction,”.  BD67871MWV-Z features ROHM's proprietary Active Gate Drive technology “TriC3™”, which rapidly senses voltage information from the external power FETs and adjust gate drive current accordingly in real-time. This greatly reduces FETs’ switching loss (and hence heat generation) FET power consumption during switching while simultaneously suppressing ringing to achieve low EMI.  Compared to ROHM's conventional constant-current drive products, TriC3™ gate drive has been demonstrated in actual motors that FET heat generation by approximately 35% while maintaining equivalent EMI levels. Furthermore, BD67871MWV-Z adopts UQFN28 package and pin layout which are commonly used in motor driver ICs for medium-voltage industrial equipment applications, contributing to reduced engineering effort required in circuit modifications and new designs.  Mass production of the new product commenced in September 2025 (sample price: $5.5/unit, tax excluded).  ROHM also offer general-purpose motor drivers (BD67870MWV-Z, BD67872MWV-Z) with the same package and pin configuration as the new product, designed for constant-voltage drive. From general-purpose types to the value-added types featuring the new TriC3™, we offer a comprehensive product lineup to supports a wide variety of applications and use cases. We are committed to contributing to improved motor efficiency, enhanced application functionality, and reduced power consumption.  Application Examples  •Industrial Equipment: Various motors such as electric drills/drivers and industrial fans  •Consumer Appliances: Various motors used in vacuum cleaners, air purifiers, air conditioners, ventilation fans and E-bikes (electric-assist sports bicycles)  TriC3™  A multi-step constant current drive technology developed by ROHM. By controlling gate current in three steps, it achieves high-speed, high-efficiency operation while minimizing EMI by suppressing ringing.  • TriC3™ is a trademark or registered trademark of ROHM Co., Ltd.  Terminology  EMI (Electromagnetic Interference)  EMI is used as an indicator of how much noise a product generates during operation, potentially causing malfunctions in surrounding ICs or systems. “Low EMI” means the product generates less noise.  Ringing  High-frequency oscillations or overshoot occurring during switching. This arises from the resonation between inductance and capacitance, including parasitic elements in the circuit. In the context of motor driving, ringing happens when the power MOSFETs are turned on and off.
Key word:
Release time:2025-11-21 16:54 reading:412 Continue reading>>
Renesas’ Industry-First Gen6 DDR5 Registered Clock Driver Sets Performance Benchmark by Delivering 9600 MT/s
  Renesas Electronics Corporation (TSE: 6723), a premier supplier of advanced semiconductor solutions, today announced that it has delivered the industry’s first sixth-generation Registered Clock Driver (RCD) for DDR5 Registered Dual In-line Memory Modules (RDIMMs). The new RCD is the first to achieve a data rate of 9600 Mega Transfers Per Second (MT/s), surpassing the industry standard. This breakthrough marks a significant leap from the 8800 MT/s performance of Renesas’ Gen5 RCD, setting a new standard for memory interface performance in data center servers.  Key Features of Renesas’ Gen6 DDR5 RCD  10% Bandwidth Increase over Renesas’ Gen5 RCD (9600 MT/s versus 8800 MT/s)  Backward Compatibility with Gen5 Platforms: Provides seamless upgrade path  Enhanced Signal Integrity and Power Efficiency: Enables AI, HPC, and LLM workloads  Expanded Decision Feedback Equalization Architecture: Offers eight taps and 1.5mV granularity for superior margin tuning  Decision Engine Signal Telemetry and Margining (DESTM): Improved system-level diagnostics provides real-time signal quality indication, margin visibility, and diagnostic feedback for higher speeds  The new DDR5 RDIMMs are needed to keep pace with the ever-increasing memory bandwidth demands of Artificial Intelligence (AI), High-Performance Compute (HPC) and other data center applications. Renesas has been instrumental in the design, development and deployment of the new RDIMMs, collaborating with industry leaders including CPU and memory providers, along with end customers. Renesas is the leader in DDR5 RCDs, building on its legacy of signal integrity and power optimization expertise.  “Explosive growth of generative AI is fueling higher SoC core count. This is driving unprecedented demand for memory bandwidth and capacity as a critical enabler of data center performance,” said Sameer Kuppahalli, Vice President of Memory Interface Division at Renesas. “Our sixth generation DDR5 Registered Clock Driver demonstrates Renesas’ continued commitment to memory interface innovation, path-finding and delivering solutions to stay ahead of market demand.”  "Samsung has collaborated with Renesas across multiple generations of memory interface components, including the successful qualification of Gen5 DDR5 RCD and PMIC5030,” said Indong Kim, VP of DRAM Product Planning, Samsung Electronics. “We are now excited to integrate Gen6 RCD into our DDR5 DIMMs, across multiple SoC platforms to support the growing demands of AI, HPC, and other memory-intensive workloads."  Availability  The RRG5006x Gen6 RCD is designed to meet the stringent requirements of next-generation server platforms, offering robust performance, reliability, and scalability. Renesas is sampling the new RRG5006x RCD to select customers today, including all major DRAM suppliers. Production availability is expected in the first half of 2027.
Key word:
Release time:2025-11-13 16:33 reading:571 Continue reading>>
Murata expands lineup of high cutoff frequency chip common mode choke coils in 0504-inch size for automotive high-speed differential interfaces
Key word:
Release time:2025-11-10 17:12 reading:446 Continue reading>>
GigaDevice GD32F5xx and GD32G5xx Software Test Libraries (STL) Receive TÜV Rheinland IEC 61508 Functional Safety Certification
  GigaDevice, a leading semiconductor company specializing in Flash memory, 32-bit microcontrollers (MCUs), sensors, and analog products, announced that its GD32F5xx and GD32G5xx Software Test Libraries have received IEC 61508 SC3 (SIL 2/SIL 3) functional safety certification from TÜV Rheinland.  This milestone expands GigaDevice’s functional safety portfolio, which already includes the GD32H7 and GD32F30x STLs, and now covers a broad range of MCUs with Arm® Cortex®-M7, Cortex®-M4, and Cortex®-M33 cores. Building on this foundation, GigaDevice will continue to deliver high-performance and safety-focused hardware and software solutions for key applications such as industrial control, energy and power, and humanoid robotics.  With the growing emphasis on safety across industries like industrial automation, functional safety has become a critical consideration in embedded system design. The GD32F5xx and GD32G5xx MCUs, based on the Arm® Cortex®-M33 core, have become key solutions for high-performance applications requiring robust safety measures.  The GD32F5xx series is optimized for applications in energy and power management, photovoltaic energy storage, and industrial automation, where high precision and reliable control are essential.  The GD32G5xx series combines excellent processing performance with a wide range of digital and analog interfaces. It is available in compact packages such as 81-pin WLCSP81 (4x4mm), making it ideal for applications in humanoid robotics, digital power systems, charging stations, energy storage inverters, servo motors, and optical communications.  The GigaDevice STLs monitor GD32F5xx and GD32G5xx MCU modules in real-time to detect hardware faults. If a fault is detected, predefined safety mechanisms will be triggered to ensure the MCU always remains in a safe state, reducing potential risks and enhancing system reliability.  This certification highlights GigaDevice's deep expertise in functional safety system design and its commitment to meeting the highest international safety standards, reinforcing its position as a trusted provider of secure, high-performance solutions for mission-critical industries.  About GigaDevice  GigaDevice Semiconductor Inc. is a global leading fabless supplier. Founded in April 2005, the company has continuously expanded its international footprint and established its global headquarters in Singapore in 2025. Today, GigaDevice operates branch offices across numerous countries and regions, providing localized support at customers' fingertips. Committed to building a complete ecosystem with major product lines – Flash memory, MCU, sensor and analog – as the core driving force, GigaDevice can provide a wide range of solutions and services in the fields of industrial, automotive, computing, consumer electronics, IoT, mobile, networking and communications. GigaDevice has received the ISO26262:2018 automotive functional safety ASIL D certification, IEC 61508 functional safety product certification, as well as ISO9001, ISO14001, ISO45001, and Duns certifications. In a constant quest to expand our technology offering to customers, GigaDevice has also formed strategic alliances with leading foundries, assembly, and test plants to streamline supply chain management.
Key word:
Release time:2025-11-04 17:01 reading:659 Continue reading>>
ROHM Develops Breakthrough Schottky Barrier Diode Combining Low VF and IR for Advanced Image Sensor Protection
  ROHM has developed an innovative Schottky barrier diode that overcomes the traditional VF / IR trade-off. This way, it delivers high reliability protection for a wide range of high-resolution image sensor applications, including ADAS cameras.  Modern ADAS cameras and similar systems require higher pixel counts to meet the demand for greater precision. This has created a growing concern – the risk of damage caused by photovoltaic voltage generated under light exposure during power OFF. While low-VF SBDs are effective countermeasures, low IR is also essential during operation to prevent thermal runaway. However, simultaneously achieving both low VF and IR has been a longstanding technical challenge. ROHM has overcome this hurdle by fundamentally redesigning the device structure – successfully developing an SBD that combines low VF with low IR which is ideal for protection applications.  The RBE01VYM6AFH represents a novel concept: leveraging the low-VF characteristics of rectification SBDs for protection purposes. By adopting a proprietary architecture, ROHM has achieved low IR that is typically difficult to realize with low VF designs. As a result, even under harsh environmental conditions, the device meets market requirements by delivering VF of less than 300mV (at IF=7.5mA even at Ta=-40°C), and an IR of less than 20mA (at VR=3V even at Ta=125°C.) These exceptional characteristics not only prevent circuit damage caused by high photovoltaic voltage generated when powered OFF, but also significantly reduce the risk of thermal runaway and malfunction during operation.  The diode is housed in a compact flat-lead SOD-323HE package (2.5mm × 1.4mm / 0.098inch × 0.055inch) that offers both space efficiency and excellent mountability. This enables support for space-constrained applications such as automotive cameras, industrial equipment, and security systems. The RBE01VYM6AFH is also AEC-Q101 qualified, ensuring suitability as a protection device for next-generation automotive electronics requiring high reliability and long-term stability.  Going forward, ROHM will focus on expanding its lineup with even smaller packages to address continuing miniaturization demands.  Key Specifications  Application Examples  Image sensor-equipped sets such as ADAS cameras, smart intercoms, security cameras, and home IoT devices.  Terminology  Photovoltaic Voltage  A term commonly used with optical sensors, referring to the voltage produced when exposed to light. In general, the stronger the light intensity or higher the pixel count the greater voltage generated.
Key word:
Release time:2025-10-27 16:49 reading:486 Continue reading>>
ROHM Publishes White Paper on Power Solutions for Next-Generation 800 VDC Architecture Aligned with the Industry's 800 VDC Roadmap to Enable Gigawatt-Scale AI Infrastructure
  ROHM has released a new white paper detailing advanced power solutions for AI data centers based on the novel 800 VDC architecture, reinforcing its role as a key semiconductor industry player in driving system innovation.  As part of the collaboration announced in June 2025, the white paper outlines optimal power strategies that support large-scale 800 VDC power distribution across AI infrastructure.  The 800 VDC architecture represents a highly efficient, scalable power delivery system poised to transform data center design by enabling gigawatt-scale AI factories. ROHM offers a broad portfolio of power devices, including silicon (Si), silicon carbide (SiC), and gallium nitride (GaN), and is among the few companies globally with the technological expertise to develop analog ICs (control and power ICs) capable of maximizing device performance.  Included in the white paper are ROHM’s comprehensive power solutions spanning a wide range of power devices and analog IC technologies, supported by thermal design simulations, board-level design strategies, and real-world implementation examples.  [Access the white paper here]  Key Highlights of the White Paper• Rising Rack Power Consumption: Power demand per rack in AI data centers is rapidly increasing, pushing conventional 48V/12V DC power supply systems to their limits.  • Shift to 800 VDC: Transitioning to an 800 VDC architecture significantly enhances data center efficiency, power density, and sustainability.  • Redefined Power Conversion: In the 800 VDC system, AC-DC conversion (PSU), traditionally performed within server racks, is relocated to a dedicated power rack.  • Essential Role of SiC and GaN: Wide bandgap devices are critical for achieving efficient performance. With AC-DC conversion moved outside the IT rack, higher-density configurations inside the IT rack can better support GPU integration.  • Optimized Conversion Topologies: Each conversion stage—from AC to 800 VDC in the power rack and from 800 VDC to lower voltages in the IT rack—requires specialized solutions. ROHM’s SiC and GaN devices contribute to higher efficiency and reduced noise while decreasing the size of peripheral components, significantly increasing power density.  • Breakthrough Device Technologies: ROHM’s EcoSiC™ series offers industry-leading low on-resistance and top-side cooling modules ideal for AI servers, while the EcoGaN™ series combines GaN performance with proprietary analog IC technologies, including Nano Pulse Control™. This allows for stable gate drive, ultra-fast control, and high-frequency operation–features that have earned strong market recognition.  The shift to 800 VDC infrastructure is a collective industry effort. ROHM is working closely with NVIDIA, data center operators, and power system designers to deliver essential wide bandgap semiconductor technologies for next-generation AI infrastructure. Through strategic collaborations, including a 2022 partnership with Delta Electronics, ROHM continues to drive innovation in SiC and GaN power devices, enabling powerful, sustainable, and energy-efficient data center solutions.  ROHM’s EcoSiC™  EcoSiC™ is ROHM’s brand of devices that utilize silicon carbide, which is attracting attention in the power device field for performance that surpasses silicon. ROHM independently develops technologies essential for the advancement of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.  ・EcoSiC™ is a trademark or registered trademark of ROHM Co., Ltd.
Key word:
Release time:2025-10-15 11:50 reading:691 Continue reading>>
Renesas Powers 800 Volt Direct Current AI Data Center Architecture with Next-Generation Power Semiconductors
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, announced that it is supporting efficient power conversion and distribution for the 800 Volt Direct Current power architecture announced by NVIDIA, helping fuel the next wave of smarter, faster AI infrastructure.  As GPU-driven AI workloads intensify and data center power consumption scales into multi-hundred megawatt territory, modern data centers must adopt power architectures that are both energy optimized and scalable. Wide bandgap semiconductors such as GaN FET switches are quickly emerging as a key solution thanks to their faster switching, lower energy losses, and superior thermal management. Moreover, GaN power devices will enable the development of 800V direct current buses within racks to significantly reduce distribution losses and the need for large bus bars, while still supporting reuse of 48V components via DC/DC step-down converters.  Renesas’ GaN based power solutions are especially suited for the task, supporting efficient and dense DC/DC power conversion with operating voltages of 48V to as high as 400V, with the option to stack up to 800V. Based on the LLC Direct Current Transformer (LLC DCX) topology, these converters achieve up to 98 percent efficiency. For the AC/DC front-end, Renesas uses bi-directional GaN switches to simplify rectifier designs and increase power density. Renesas REXFET MOSFETs, drivers and controllers complement the BOM of the new DC/DC converters.   “AI is transforming industries at an unprecedented pace, and the power infrastructure must evolve just as quickly to meet the explosive power demands,” said Zaher Baidas, Senior Vice President and General Manager of Power at Renesas. “Renesas is helping power the future of AI with high-density energy solutions built for scale, supported by our full portfolio of GaN FETs, MOSFETs, controllers and drivers. These innovations will deliver performance and efficiency, with the scalability required for future growth.”  Renesas Power Management Leadership  A world leader in power management ICs, Renesas ships more than 1.5 billion units per year, with increased shipments serving the computing industry, and the remainder supporting industrial and Internet of Things applications as well as data center and communications infrastructure. Renesas has the broadest portfolio of power management devices, delivering unmatched quality and efficiency with exceptional battery life. As a trusted supplier, Renesas has decades of experience designing power management ICs, backed by a dual-source production model, the industry’s most advanced process technology, and a vast network of more than 250 ecosystem partners.  About Renesas Electronics Corporation  Renesas Electronics Corporation (TSE: 6723) empowers a safer, smarter and more sustainable future where technology helps make our lives easier. A leading global provider of microcontrollers, Renesas combines our expertise in embedded processing, analog, power and connectivity to deliver complete semiconductor solutions. These Winning Combinations accelerate time to market for automotive, industrial, infrastructure and IoT applications, enabling billions of connected, intelligent devices that enhance the way people work and live. 
Key word:
Release time:2025-10-13 13:29 reading:717 Continue reading>>

Turn to

/ 93

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
model brand To snap up
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code