ROHM Develops Breakthrough Schottky Barrier Diode Combining Low VF and IR for Advanced Image Sensor Protection
  ROHM has developed an innovative Schottky barrier diode that overcomes the traditional VF / IR trade-off. This way, it delivers high reliability protection for a wide range of high-resolution image sensor applications, including ADAS cameras.  Modern ADAS cameras and similar systems require higher pixel counts to meet the demand for greater precision. This has created a growing concern – the risk of damage caused by photovoltaic voltage generated under light exposure during power OFF. While low-VF SBDs are effective countermeasures, low IR is also essential during operation to prevent thermal runaway. However, simultaneously achieving both low VF and IR has been a longstanding technical challenge. ROHM has overcome this hurdle by fundamentally redesigning the device structure – successfully developing an SBD that combines low VF with low IR which is ideal for protection applications.  The RBE01VYM6AFH represents a novel concept: leveraging the low-VF characteristics of rectification SBDs for protection purposes. By adopting a proprietary architecture, ROHM has achieved low IR that is typically difficult to realize with low VF designs. As a result, even under harsh environmental conditions, the device meets market requirements by delivering VF of less than 300mV (at IF=7.5mA even at Ta=-40°C), and an IR of less than 20mA (at VR=3V even at Ta=125°C.) These exceptional characteristics not only prevent circuit damage caused by high photovoltaic voltage generated when powered OFF, but also significantly reduce the risk of thermal runaway and malfunction during operation.  The diode is housed in a compact flat-lead SOD-323HE package (2.5mm × 1.4mm / 0.098inch × 0.055inch) that offers both space efficiency and excellent mountability. This enables support for space-constrained applications such as automotive cameras, industrial equipment, and security systems. The RBE01VYM6AFH is also AEC-Q101 qualified, ensuring suitability as a protection device for next-generation automotive electronics requiring high reliability and long-term stability.  Going forward, ROHM will focus on expanding its lineup with even smaller packages to address continuing miniaturization demands.  Key Specifications  Application Examples  Image sensor-equipped sets such as ADAS cameras, smart intercoms, security cameras, and home IoT devices.  Terminology  Photovoltaic Voltage  A term commonly used with optical sensors, referring to the voltage produced when exposed to light. In general, the stronger the light intensity or higher the pixel count the greater voltage generated.
Key word:
Release time:2025-10-27 16:49 reading:321 Continue reading>>
ROHM Publishes White Paper on Power Solutions for Next-Generation 800 VDC Architecture Aligned with the Industry's 800 VDC Roadmap to Enable Gigawatt-Scale AI Infrastructure
  ROHM has released a new white paper detailing advanced power solutions for AI data centers based on the novel 800 VDC architecture, reinforcing its role as a key semiconductor industry player in driving system innovation.  As part of the collaboration announced in June 2025, the white paper outlines optimal power strategies that support large-scale 800 VDC power distribution across AI infrastructure.  The 800 VDC architecture represents a highly efficient, scalable power delivery system poised to transform data center design by enabling gigawatt-scale AI factories. ROHM offers a broad portfolio of power devices, including silicon (Si), silicon carbide (SiC), and gallium nitride (GaN), and is among the few companies globally with the technological expertise to develop analog ICs (control and power ICs) capable of maximizing device performance.  Included in the white paper are ROHM’s comprehensive power solutions spanning a wide range of power devices and analog IC technologies, supported by thermal design simulations, board-level design strategies, and real-world implementation examples.  [Access the white paper here]  Key Highlights of the White Paper• Rising Rack Power Consumption: Power demand per rack in AI data centers is rapidly increasing, pushing conventional 48V/12V DC power supply systems to their limits.  • Shift to 800 VDC: Transitioning to an 800 VDC architecture significantly enhances data center efficiency, power density, and sustainability.  • Redefined Power Conversion: In the 800 VDC system, AC-DC conversion (PSU), traditionally performed within server racks, is relocated to a dedicated power rack.  • Essential Role of SiC and GaN: Wide bandgap devices are critical for achieving efficient performance. With AC-DC conversion moved outside the IT rack, higher-density configurations inside the IT rack can better support GPU integration.  • Optimized Conversion Topologies: Each conversion stage—from AC to 800 VDC in the power rack and from 800 VDC to lower voltages in the IT rack—requires specialized solutions. ROHM’s SiC and GaN devices contribute to higher efficiency and reduced noise while decreasing the size of peripheral components, significantly increasing power density.  • Breakthrough Device Technologies: ROHM’s EcoSiC™ series offers industry-leading low on-resistance and top-side cooling modules ideal for AI servers, while the EcoGaN™ series combines GaN performance with proprietary analog IC technologies, including Nano Pulse Control™. This allows for stable gate drive, ultra-fast control, and high-frequency operation–features that have earned strong market recognition.  The shift to 800 VDC infrastructure is a collective industry effort. ROHM is working closely with NVIDIA, data center operators, and power system designers to deliver essential wide bandgap semiconductor technologies for next-generation AI infrastructure. Through strategic collaborations, including a 2022 partnership with Delta Electronics, ROHM continues to drive innovation in SiC and GaN power devices, enabling powerful, sustainable, and energy-efficient data center solutions.  ROHM’s EcoSiC™  EcoSiC™ is ROHM’s brand of devices that utilize silicon carbide, which is attracting attention in the power device field for performance that surpasses silicon. ROHM independently develops technologies essential for the advancement of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.  ・EcoSiC™ is a trademark or registered trademark of ROHM Co., Ltd.
Key word:
Release time:2025-10-15 11:50 reading:485 Continue reading>>
Renesas Powers 800 Volt Direct Current AI Data Center Architecture with Next-Generation Power Semiconductors
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, announced that it is supporting efficient power conversion and distribution for the 800 Volt Direct Current power architecture announced by NVIDIA, helping fuel the next wave of smarter, faster AI infrastructure.  As GPU-driven AI workloads intensify and data center power consumption scales into multi-hundred megawatt territory, modern data centers must adopt power architectures that are both energy optimized and scalable. Wide bandgap semiconductors such as GaN FET switches are quickly emerging as a key solution thanks to their faster switching, lower energy losses, and superior thermal management. Moreover, GaN power devices will enable the development of 800V direct current buses within racks to significantly reduce distribution losses and the need for large bus bars, while still supporting reuse of 48V components via DC/DC step-down converters.  Renesas’ GaN based power solutions are especially suited for the task, supporting efficient and dense DC/DC power conversion with operating voltages of 48V to as high as 400V, with the option to stack up to 800V. Based on the LLC Direct Current Transformer (LLC DCX) topology, these converters achieve up to 98 percent efficiency. For the AC/DC front-end, Renesas uses bi-directional GaN switches to simplify rectifier designs and increase power density. Renesas REXFET MOSFETs, drivers and controllers complement the BOM of the new DC/DC converters.   “AI is transforming industries at an unprecedented pace, and the power infrastructure must evolve just as quickly to meet the explosive power demands,” said Zaher Baidas, Senior Vice President and General Manager of Power at Renesas. “Renesas is helping power the future of AI with high-density energy solutions built for scale, supported by our full portfolio of GaN FETs, MOSFETs, controllers and drivers. These innovations will deliver performance and efficiency, with the scalability required for future growth.”  Renesas Power Management Leadership  A world leader in power management ICs, Renesas ships more than 1.5 billion units per year, with increased shipments serving the computing industry, and the remainder supporting industrial and Internet of Things applications as well as data center and communications infrastructure. Renesas has the broadest portfolio of power management devices, delivering unmatched quality and efficiency with exceptional battery life. As a trusted supplier, Renesas has decades of experience designing power management ICs, backed by a dual-source production model, the industry’s most advanced process technology, and a vast network of more than 250 ecosystem partners.  About Renesas Electronics Corporation  Renesas Electronics Corporation (TSE: 6723) empowers a safer, smarter and more sustainable future where technology helps make our lives easier. A leading global provider of microcontrollers, Renesas combines our expertise in embedded processing, analog, power and connectivity to deliver complete semiconductor solutions. These Winning Combinations accelerate time to market for automotive, industrial, infrastructure and IoT applications, enabling billions of connected, intelligent devices that enhance the way people work and live. 
Key word:
Release time:2025-10-13 13:29 reading:399 Continue reading>>
ROHM and Infineon collaborate on silicon carbide power electronics packages to enhance flexibility for customers
  ROHM and Infineon Technologies AG have signed a Memorandum of Understanding to collaborate on packages for silicon carbide (SiC) power semiconductors used in applications such as on-board chargers, photovoltaics, energy storage systems, and AI data centers. Specifically, the partners aim to enable each other as second sources of selected packages for SiC power devices, a move which will increase design and procurement flexibility for their customers. In the future, customers will be able to source devices with compatible housings from both ROHM and Infineon. The collaboration will ensure seamless compatibility and interchangeability to match specific customer needs.  "We are excited about working with ROHM to further accelerate the establishment of SiC power devices," said Dr. Peter Wawer, Division President Green Industrial Power at Infineon. "Our collaboration will provide customers with a wider range of options and greater flexibility in their design and procurement processes, enabling them to develop more energy-efficient applications that will further drive decarbonization."  "ROHM is committed to providing customers with the best possible solutions. Our collaboration with Infineon constitutes a significant step towards the realization of this goal, since it broadens the portfolio of solutions," said Dr. Kazuhide Ino, Member of the Board, Managing Executive Officer, in charge of Power Devices Business at ROHM. "By working together, we can drive innovation, reduce complexity, and increase customer satisfaction, ultimately shaping the future of the power electronics industry."Dr. Peter Wawer, Division President Green Industrial Power at Infineon (left)and Dr. Kazuhide Ino, Member of the Board and Managing Executive Officer at ROHM  As part of the agreement, ROHM will adopt Infineon’s innovative top-side cooling platform for SiC, including TOLT, D-DPAK, Q-DPAK, Q-DPAK dual, and H-DPAK packages. Infineon's top-side cooling platform offers several benefits, including a standardized height of 2.3 mm for all packages. This facilitates designs and reduces system costs for cooling, while also enabling better board space utilization and up to two times more power density.  At the same time, Infineon will take on ROHM’s DOT-247 package with SiC half-bridge configuration to develop a compatible package. That will expand Infineon’s recently announced Double TO-247 IGBT portfolio to include SiC half-bridge solutions. ROHM's advanced DOT-247 delivers higher power density and reduces assembly effort compared to standard discrete packages. Featuring a unique structure that integrates two TO-247 packages, it enables to reduce thermal resistance by approximately 15 percent and inductance by 50 percent compared to the TO-247. The advantages bring 2.3 times higher power density than the TO-247.  ROHM and Infineon plan to expand their collaboration in the future to include other packages with both silicon and wide-bandgap power technologies such as SiC and gallium nitride (GaN). This will further strengthen the relationship between the two companies and provide customers with an even broader range of solutions and sourcing options.  Semiconductors based on SiC have improved the performance of high-power applications by switching electricity even more efficiently, enabling high reliability and robustness under extreme conditions, while allowing for even smaller designs. Using ROHM’s and Infineon’s SiC products, customers can develop energy-efficient solutions and increase power density for applications such as electric vehicle charging, renewable energy systems and AI data centers.  About ROHM  ROHM, a leading semiconductor and electronic component manufacturer, was established in 1958. From the automotive and industrial equipment markets to the consumer and communication sectors, ROHM supplies ICs, discretes, and electronic components featuring superior quality and reliability through a global sales and development network. Our strengths in the analog and power markets allow us to propose optimized solutions for entire systems that combine peripheral components (i.e., transistors, diodes, resistors) with the latest SiC power devices as well as drive ICs that maximize their performance.  Further information is available at https://www.rohm.com  About Infineon  Infineon Technologies AG is a global semiconductor leader in power systems and IoT. Infineon drives decarbonization and digitalization with its products and solutions. The company has around 58,060 employees worldwide and generated revenue of about €15 billion in the 2024 fiscal year (ending 30 September). Infineon is listed on the Frankfurt Stock Exchange (ticker symbol: IFX) and in the USA on the OTCQX International over-the-counter market (ticker symbol: IFNNY).
Key word:
Release time:2025-09-29 14:53 reading:490 Continue reading>>
NOVOSENSE launches NSUC1612: Fully Integrated Embedded Motor Drive SoC for Smarter, Cost-Efficient Automotive Actuators
  NOVOSENSE has released the NSUC1612, a next-generation motor driver SoC designed to address the limitations of traditional discrete solutions in automotive smart actuators, such as system complexity, high cost, and limited reliability.  With its fully integrated single-chip architecture, the NSUC1612 can simplify design, reduce cost, and enhance stability. It supports a wide range of applications, including automotive water valves, automotive air-conditioning vent, active grille shutters, as well as stepper motors, DC brushed motors, and DC brushless motors—delivering an efficient and scalable solution for automotive electronics.  1.Fully Integrated Architecture: Simplified Design, Reduced Complexity  Conventional actuator control systems often require multiple components, including MCU, motor drivers, communication interfaces, and protection circuits, leading to complex PCB layout, increased solder joints, and compatibility issues.The NSUC1612 integrates a 32-bit ARM® Cortex®-M3 MCU with 4- or 3-channel half-bridge drivers, LIN/CAN controller communication interfaces, a 12-bit ADC, temperature sensors, and other essential modules, all in a single-chip. This eliminates the need for additional companion ICs while covering the full motor control, communication, and protection process.By reducing external components and simplifying hardware design, the NSUC1612 shortens development cycles and minimizes EMI risk through optimized internal signal routing.  2.Excellent EMC Performance: Reliable Operation in Harsh Environments  Automotive electronics operate in complex electromagnetic conditions where EMC performance directly impacts actuator precision and system stability. The NSUC1612 provides simplified reference circuits and optimized PCB layout. In compliance with CISPR 25:2021 Class 5, it passes stringent automotive EMC/EMI tests, compliant with the automotive standardsSelected Test Results Based on CISPR 25:2021  This ensures stable motor control signals and helps prevent malfunctions such as actuator stalls or misoperation caused by electromagnetic interference.  3.Strong Performance: Balanced Drive Capability and Processing Power  The NSUC1612 is designed to deliver both reliable motor driving capability and efficient computation: NSUC1612B: 4 half-bridge outputs, peak current up to 500 mA NSUC1612E: 3 half-bridge outputs, peak current up to 2.1 AThese options support brushed DC, BLDC, and stepper motors across diverse applications, from HVAC air vent adjustment to seat ventilation.  The ARM® Cortex®-M3 core with Harvard architecture integrates 32 KB Flash, 2 KB SRAM, and 15 KB ROM with Bootloader, supporting OTA upgrades. A 32 MHz high-precision oscillator with PLL ensures stable computation, while low-power sleep mode consumes less than 50 μA across the full operation temperature range, balancing performance with energy efficiency.  4.Automotive-Grade Reliability: Built for Demanding Conditions  The NSUC1612 is designed with comprehensive reliability features to withstand harsh operating environments. It is compliant with AEC-Q100 Grade 1, supporting junction temperatures up to 150°C and ensuring stable operation across a wide temperature range from -40°C to +125°C. The device’s LIN port can tolerate up to ±40 V, while the BVDD pin supports -0.3 V to 40 V, enabling direct connection to 12V automotive batteries. In addition, integrated protection mechanisms such as over-voltage and over-temperature safeguards provide robust defense against voltage fluctuations and transient surges, delivering system-level reliability under real-world automotive conditions.  The NSUC1612 extends its value through broad application compatibility, making it suitable for automotive actuator systems. It supports brushed DC, BLDC, and stepper motors, while integrated communication interfaces—including LIN PHY (compliant with LIN 2.x, ISO 17987, and SAE J2602), FlexCAN, and SPI—allow seamless integration into existing automotive network architectures.  The NSUC1612 is ideal for a wide range of applications, including thermal management components (e.g., automotive water valves and expansion valves), cabin comfort modules (automotive air-conditioning vent), and smart body systems (active grille shutters and charging port actuators). By integrating these functions into a single device, it helps reduce design costs and simplify development.
Key word:
Release time:2025-09-23 13:12 reading:572 Continue reading>>
Murata Manufacturing Co., Ltd. expands lineup of isolated DC-DC converters for PoE IEEE802.3af
  Murata Manufacturing Co., Ltd. has expanded its lineup of isolated DC-DC converters for PoE*1 with the launch of an IEEE802.3af-compliant isolated DC-DC converter for PD*2 (hereinafter, ‘the product’). Murata has already started mass production of the product, and samples are available upon request.  *1PoE: Power over Ethernet. A technology that enables power supply over LAN cables used to build networks.  *2PD: Powered Device. A device that receives power in a PoE system.  PoE technology enables power supply over LAN cables used to build networks, improving installation flexibility, and reducing costs. In recent years, network-enabled devices such as security cameras and biometric authentication equipment have increasingly adopted PoE technology. Against this backdrop, demand for compact power modules for PoE-compatible devices is growing. In particular, biometric authentication devices typically require around 10 W of power, making the IEEE802.3af standard, which supports up to 15 W, an ideal match.  Accordingly, Murata has developed this product compliant with IEEE802.3af. The product’s compact, low-profile design (1.02×0.58×0.27 inches (26×14.8×6.8mm)) enhances layout flexibility on circuit boards. It is mainly suited for camera modules and biometric authentication devices that require space-saving and low-noise characteristics, and contributes to the miniaturization of other communication devices.  Key features  Isolated DC-DC converter module compliant with IEEE802.3af Class specifications  Compact and low-profile (1.02×0.58×0.27 inches (26×14.8×6.8mm)) for high layout flexibility  Wide operating temperature range (-40°C to +85°C) for versatile applications  Applications  IEEE802.3af-compliant devices including wireless access points, biometric authentication devices, security cameras, camera modules, IP phones, and audio speakers  Specifications
Key word:
Release time:2025-09-08 15:11 reading:484 Continue reading>>
ROHM’s SiC MOSFETs Adopted in Schaeffler’s Inverter Brick, Now in Mass Production
  ROHM and Schaeffler, a leading German automotive supplier, have started mass production of a new high-voltage inverter brick equipped with ROHM’s SiC (silicon carbide) MOSFET bare chips as part of their strategic partnership. The inverter brick is intended for a major Chinese car manufacturer.High voltage inverter brickSiC MOS Wafer  The Schaeffler inverter subassembly is the essential power device building block (brick) to control the electric drive via logic signals. This is where the high-frequency current pulses are produced that set the vehicle’s electric motor in motion. The performance characteristics of the inverter brick now being produced are impressive: Schaeffler increased the output of the brick by increasing the maximum possible battery voltage to much more than the usual 800 V – and with RMS currents of up to 650 A, which turn the sub-module into a compact power pack.  “Through our strategic approach of incorporating scalability and modularity into our e-mobility solutions – from individual components to a highly integrated electric axle – we developed the readily integrated inverter brick. Based on our generic platform development, it took us just one year to bring this optimal product for the popular X-in-1 architectures to volume production readiness,” says Thomas Stierle, CEO of the E-Mobility Division at Schaeffler.  Modularity and scalability as the key to easy integration  As a core component of an inverter, a brick has to meet strict requirements. The characteristics of the sub-module are indicative of the factors behind the current sales success and start of volume production: ROHM’s silicon carbide (SiC) power semiconductors enable the frame-mounted sub-module with high power density to be compact, efficient, and readily integrated into various inverters through its modular and scalable design. The sub-module incorporates the power module for pulse width modulation (PWM) of the current pulses, the DC link capacitor, a DC link and a cooler. Moreover, the brick has a DC boost function, thanks to which a vehicle with 800 V architecture can also be charged at a 400 V charging station at a charging speed of 800 V.  “We are glad about the launch of volume production for Schaeffler’s inverter brick with our 4th generation SiC MOSFET,” says Dr. Kazuhide Ino, Member of the Board and Managing Executive Officer at ROHM. “With our SiC technology we are making a substantial contribution to increasing the efficiency and performance of electric cars. Working with Schaeffler as our partner, we are thus fostering innovation and sustainability in the automotive industry,” Dr. Ino adds.  The strategic partnership of Schaeffler (originally initiated under Vitesco Technologies) with ROHM has existed since 2020 and serves to secure capacity for energy-efficient SiC power semiconductors.Thomas Stierle, CEO E-Mobility Division at Schaeffler (left) and Dr. Kazuhide Ino, Member of the Board and Managing Executive Officer at ROHM  About Schaeffler Group  The Schaeffler Group has been driving forward groundbreaking inventions and developments in the field of motion technology for more than 75 years. With innovative technologies, products and services for electric mobility, CO₂-efficient drives, chassis solutions and renewable energies, the company is a reliable partner for making motion more efficient, intelligent and sustainable – over the entire life cycle. Schaeffler describes its comprehensive range of products and services in the mobility ecosystem by means of eight product families, from bearing solutions and linear guidance systems of all kinds to repair and monitoring services. With around 120,000 employees at more than 250 locations in 55 countries, Schaeffler is one of the world’s largest family-owned companies and ranks among Germany’s most innovative companies.
Key word:
Release time:2025-09-05 16:57 reading:557 Continue reading>>
Proudly Made in India: Fibocom & Kaynes Technology Join Forces to Drive IoT Innovation, Policy Compliance, and Local Growth
  Fibocom,a leading global provider of wireless communication modules and AI solutions,today announced a strategic manufacturing partnership with Kaynes Technology, oneof India’s foremost electronics and semiconductor manufacturing pioneers. Thiscollaboration underscores Fibocom’s commitment to India’s national initiatives,including Make in India and Atmanirbhar Bharat,while addressing the growing demand for locally produced IoT components.  Equipped withhigh-speed SMT lines, automated testing systems, and precision assemblyequipment, the state-of-the-art facility in Karnataka, Hyderabad, and Gujaratstrengthens Fibocom’s integration into India’s dynamic manufacturing ecosystem.This initiative represents more than capacity expansion — it reflects Fibocom’svision to embrace India, grow with India, and empower the world through India.  Strategic PolicyAlignment and Market Commitment  Fibocom’sinvestment in local manufacturing is fully aligned with India’s industrial developmentagenda, supporting technological self-reliance, accelerating time-to-market forIndian OEMs, and delivering long-term value to both domestic and globalcustomers.  Partnering with India’s ManufacturingLeader  With decades ofexpertise in precision manufacturing, supply chain integration, and world-classquality systems, Kaynes Technology provides the foundation for this strategicpartnership. Together, Fibocom and Kaynes Technology are advancing India as aglobal force for next-generation connectivity solutions.  “Kaynes Technologyis proud to join forces with Fibocom to deliver critical IoT componentsmanufactured in India,” said Raghu Panicker, CEO, Kaynes Technology.“This collaboration enables local industries to innovate faster, scale smarter,and compete more effectively on the global stage.”  Trusted & Proudly Made in India  Fibocom’s locallyproduced modules are designed to global standards while proudly bearing the'Made in India' mark. This not only enhances trust among Indian OEMs andgovernment stakeholders but also reinforces India’s growing reputation as areliable center for IoT innovation and exports.  “Thispartnership is a statement of intent — Fibocom is here not just to sell, but tobuild, invest, and grow with India,” said Ragin Kallanmar Thodikai, Country SalesManager, India, Fibocom. “We are proud to contribute to afuture where intelligent connectivity is Madein India and trusted worldwide.“
Key word:
Release time:2025-09-02 15:36 reading:623 Continue reading>>
New Renesas USB-C Power Solution with Innovative Three-Level Topology Improves Performance and Reduces System Size
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced the RAA489300/RAA489301 high-performance buck controller designed with a three-level buck topology used for battery charging and voltage regulation in USB-C systems such as multiple-port USB-PD chargers, portable power stations, PC docking station, robots, drones, and other applications that need a high efficiency DC/DC controller.  The three-level buck converter topology enabled by the new IC delivers exceptional efficiency and significantly reduces the required inductance for regulating the output voltage. Its innovative design minimizes power loss and reduces system size, making it ideal for compact, high-performance applications.  The three-level topology consists of two additional switches and a flying capacitor compared to a conventional two-level buck converter. The flying capacitor reduces voltage stress on the switches, allowing designers to use lower voltage FETs with better figures of merit. The result is reduced conduction and switching losses. This topology also enables the use of a smaller inductor with peak-to-peak ripple of only about 25 percent of that of a two-level converter, enabling reduced inductor core and direct current resistance losses.  Renesas is a worldwide leader in USB-PD solutions, offering a comprehensive range of products, including turnkey solutions for various applications. Renesas helps customers shorten their time-to-market with an extensive development environment and pre-certified USB-IF reference designs. Renesas USB-PD solutions offer superior quality and safety, along with high efficiency and power density.  “This three-level buck topology solution is a prime example of Renesas’ worldwide leadership in battery charging,” said Gaurang Shah, Vice President of the Power Division at Renesas. “The innovative technology includes patent-pending breakthroughs that offer our customers clear advantages over competing USB-C power offerings.”  The 3-Level DC-DC RAA489300/RAA489301 battery charger and voltage regulator offers superior thermal performance, which reduces cooling requirements and results in cost and space savings. This innovative approach addresses the growing demand for compact and efficient power management systems.  Key Features of the RAA489300/RAA489301 battery charger and voltage regulator  Wide range of input and output voltages for use in voltage battery packs and with various PD adapters  Integrated safety features with built-in protection mechanisms against overcharging, overheating, and voltage anomalies  Scalability for easily adapting to various power levels and application requirements  Optimized switching architecture divides the voltage across power switches, improving efficiency  Minimizes power consumption, contributing to greener, more sustainable designs  Lower thermal stress improves system reliability and extends product lifespan  Winning Combinations  Renesas offers the RTK-251-SinkCharger-240W and the 240W Dual-Port Daughter Card Winning Combinations that minimize the effort required for customers to design USB-C battery charging into their products. Winning Combinations are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market. Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly.   Device Availability  The RAA489300/RAA489301 is available today in a 4×4 mm 32-lead TQFN package. Comprehensive design support and tools, including the RTK-251-SinkCharger-240W Kit and the RTKA489300DE0000BU Evaluation Board, are also available.
Key word:
Release time:2025-08-20 11:46 reading:790 Continue reading>>
High-voltage half-bridge driver NSD2622N from NOVOSENSE: A high-reliability, high-integration solution tailored for E-mode GaN
  NOVOSENSE has launched NSD2622N, a high-voltage half-bridge driver IC specifically designed for enhancement-mode GaN (E-mode GaN). This chip integrates positive/negative voltage regulation circuits, supports bootstrap supply, and provides high dv/dt immunity and robust driving capability. It significantly simplifies GaN driver circuit design while enhancing system reliability and reducing overall costs.  Application background  In recent years, gallium nitride high-electron-mobility transistors (GaN HEMTs) are gaining increasingly widespread adoption in high-voltage, high-power applications, such as AI data center power supplies, microinverters, and on-board chargers (OBCs). With significant advantages of high switching frequency and low switching losses, GaN HEMTs enable substantially improved power density in power supply systems, noticeably optimized energy efficiency, and significantly reduced system costs.  However, GaN devices still face challenges in real-world applications. For instance, E-mode GaN devices exhibit low turn-on thresholds. In high-voltage and high-power applications, particularly in hard-switching operation mode, poorly designed driver circuits can lead to false triggering due to crosstalk during high-frequency high-speed switching. Additionally, the complexity of compatible driver circuit designs raises the barrier to GaN device adoption.  To accelerate widespread GaN adoption, leading GaN manufacturers at home and abroad have introduced some power ICs with integrated drivers, especially MOSFET-LIKE GaN power devices in Si-MOSFET-compatible packages, which somewhat reduce GaN driver circuit design complexity. However, driver-integrated GaN solutions have limitations: they struggle to meet customized design requirements and are unsuitable for applications adopting multi-device parallel or bidirectional switching topologies. Therefore, discrete GaN devices with dedicated drivers remain essential for many applications. To address the above-mentioned limitations, NOVOSENSE has developed NSD2622N – a driver IC tailored to E-mode GaN, aiming to deliver high-performance, high-reliability, and cost-competitive driving solutions for high-voltage and high-power GaN applications.  Product features  NSD2622N is a high-voltage half-bridge driver IC specifically designed for E-mode GaN. It integrates a voltage regulation circuit capable of generating a configurable stable positive voltage from 5V to 6.5V to ensure reliable GaN driving, as well as a charge pump circuit that produces a fixed -2.5V negative voltage for reliable GaN turn-off. By integrating both positive and negative voltage regulation circuits, the chip supports high-side output with bootstrap supply.  NSD2622N leverages NOVOSENSE’s proven capacitive isolation technology. Its high-side driver withstands a voltage range of -700V to +700V and a minimum SW dv/dt immunity of 200V/ns. Meanwhile, low propagation delay and tight delay matching between high-side and low-side outputs make it a perfect match for the high-frequency, high-speed switching requirements of GaN devices. Additionally, NSD2622N delivers 2A (source) and -4A (sink) peak drive currents on both high-side and low-side outputs, meeting the requirements of high-speed GaN driving and multi-device parallel configurations. The IC also includes an integrated 5V LDO that can power circuits like digital isolators in applications requiring isolation.  Key specifications of NSD2622N  SW voltage range: -700V to 700V  SW dv/dt immunity: > 200V/ns  Wide supply voltage range: 5V-15V  Adjustable positive output voltage range: 5V-6.5V  Built-in negative output voltage: -2.5V  Peak drive current: 2A (source) / 4A (sink)  Minimum input pulse width (typical): 10ns  Input-to-output propagation delay (typical): 38ns  Pulse width distortion (typical): 5ns  Rise time (1nF load, typical): 6.5ns  Fall time (1nF load, typical): 6.5ns  Built-in dead time (typical): 20ns  Bootstrap supply for high-side output  Integrated 5V LDO for digital isolator supply  Undervoltage lockout (UVLO) and overtemperature protection  Operating temperature range: -40°C to +125°CFunctional block diagram of NSD2622N  Eliminating false triggering risks and providing more stable drive voltage  Compared to conventional Si MOSFET driver solutions, the key challenge in E-mode GaN driver circuit design lies in providing appropriate, stable and reliable positive/negative bias voltages. This is because that E-mode GaN typically requires a 5V-6V turn-on voltage, while its threshold voltage is as low as 1V, or even lower at high temperatures, necessitating negative turn-off voltage to prevent false triggering. To address this challenge, two common drive solutions are used for E-mode GaN: resistive-capacitive (RC) voltage division drive and direct drive.  1. RC voltage division drive  This approach utilizes standard Si MOSFET driver ICs. As shown in the diagram, during turn-on, the parallel combination of Cc and Ra is connected with Rb in series, dividing the driver supply voltage (e.g., 10V) to provide a 6V gate drive voltage for the GaN device, with Dz1 clamping the positive voltage. During turn-off, Cc discharges to provide negative turn-off voltage for the GaN device, with Dz2 clamping the negative voltage.RC voltage division drive solution  Although the RC voltage division circuit does not require sophisticated driver ICs, it introduces additional parasitic inductance due to a large number of components involved, which can impact GaN’s switching performance at high frequencies. Moreover, since the negative turn-off voltage relies on discharge from capacitor Cc, the negative turn-off voltage proves unreliable.  As shown in the half-bridge demo board test waveforms, during the startup phase (T1 in the waveform), the absence of initial charge on Cc results in failure to establish negative voltage and thus zero-voltage turn-off; during the negative turn-off period following the driver’s signal transmission (T2), the negative voltage amplitude fluctuates with capacitor discharge; and during the prolonged turn-off period (T3), the capacitor cannot sustain negative voltage, eventually discharging to zero. Consequently, RC voltage division circuits are generally limited to medium/low power applications with relatively lower reliability requirements, and are proved unsuitable for high-power systems.Waveform of E-mode GaN using RC voltage division drive circuit(CH2: Drive supply voltage; CH3: GaN gate-source voltage)  2. Direct drive  The direct drive solution requires selecting a driver IC with an appropriate undervoltage-lockout (UVLO) threshold, for example, NSI6602VD, which is specifically designed for E-mode GaN with a 4V UVLO threshold. When paired with an external positive/negative voltage regulation circuit, it can directly drive E-mode GaN devices. Below is a typical application circuit.NSI6602VD driver circuitPositive and negative voltage regulation circuits  This direct drive solution can provide reliable negative turn-off voltage for GaN under all operating conditions, when the auxiliary power supply is functioning normally. As a result, this approach is widely adopted in various high-voltage, high-power GaN applications.  The next-generation GaN driver NSD2622N from NOVOSENSE, integrates the positive/negative voltage regulation circuits directly into the chip. As shown in the half-bridge demo board test waveforms below, NSD2622N maintains consistent negative turn-off voltage amplitude and duration regardless of operating conditions. Specifically, during startup (T1 in the waveform), the negative voltage is established even before the driver sends signals; during GaN turn-off (T2), the negative voltage remains stable in amplitude; during extended periods without driver signals (T3), the negative voltage continues to stay reliably stable.Waveforms of E-mode GaN using NSD2622N driver circuit(CH2: Low-side GaN Vds, CH3: Low-side GaN Vgs)  Simplified circuit design and reduced system costs  NSD2622N can provide stable and reliable direct drive for GaN devices. More importantly, by integrating positive/negative voltage regulators, it significantly reduces external component count. By adopting the bootstrap supply architecture, NSD2622N greatly simplifies driver power circuit design and lowers overall system costs.  Taking a 3kW power supply unit (PSU) as an example, assuming both phases of the interleaved TTP PFC and full-bridge LLC use GaN devices, a complexity comparison between two direct-drive solutions is given below:  When using the NSI6602VD driver solution, each half-bridge high-side driver requires an independent isolated power supply in conjunction with corresponding isolation and positive/negative voltage regulation circuits. This means complex auxiliary power supply design for isolation. Given the high power quality requirements of GaN driving and the fact that the main power paths of the PFC and LLC stages are typically placed on separate boards, a two-stage auxiliary power architecture is often necessary. In this configuration, the first stage typically employs a device with wide input voltage range like flyback converter, to generate regulated voltage rails. The second stage may use an open-loop full-bridge topology to provide isolated power and further regulate the power to generate the required positive and negative supply voltages for NSI6602VD. Below is a typical power architecture for such a driver solution.Typical power architecture for NSI6602VD driver solution  The NSD2622N driver solution significantly simplifies auxiliary power design through its bootstrap supply capability. Below is a typical power architecture for this approach.Typical power architecture for NSD2622N driver solution  A detailed comparison of bill-of-materials (BOM) for driver and power supply circuits between the above-mentioned two GaN direct-drive solutions is provided in the table below. It can be seen that the NSD2622N solution utilizing bootstrap supply, dramatically reduces total component count compared to the NSI6602VD’s isolated power supply approach, resulting in substantially lower system costs. Even in applications requiring isolated power supply, NSD2622N maintains its competitive edge - its integrated positive/negative voltage regulators enable a more simplified peripheral circuit relative to the NSI6602VD solution, leading to fewer components and lower system costs.BOM comparison between two GaN direct drive solutions  Versatile GaN compatibility and flexible drive voltage adjustment  The E-mode GaN driver IC NSD2622N from NOVOSENSE delivers not only superior performance but also broad compatibility across various GaN devices from different brands, of different types (including both voltage-mode and current-mode), and at different voltage ratings. For instance, the output voltage of NSD2622N can be set between 5V to 6.5V by adjusting feedback resistors. This enables selection of the most appropriate driving voltage for any GaN device by simply adjusting the feedback resistors to match specific GaN characteristics, allowing GaN devices from different brands to operate at their individual peak performance points.  In addition, NSD2622N features a minimum dv/dt immunity of 200V/ns on the switching node (SW), enhancing the upper limit of GaN switching speed. The adoption of a more compact QFN package and the design of independent turn-on and turn-off output pins further reduce the driver loop parasitic inductance. The over-temperature protection ensures safer GaN applications.  NOVOSENSE also offers single-channel GaN driver IC NSD2012N. Featuring 3mm*3mm QFN package and adjustable negative voltage capability, it can meet more personalized application requirements.
Key word:
Release time:2025-08-07 14:08 reading:746 Continue reading>>

Turn to

/ 92

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
model brand To snap up
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code