200亿!士兰微拟投在厦门建设12英寸<span style='color:red'>芯片生产</span>线
  10月18日,厦门市人民政府、厦门市海沧区人民政府、杭州士兰微电子股份有限公司在厦门签署《12英寸高端模拟集成电路芯片制造生产线项目战略合作协议》,计划投资200亿元在厦门市海沧区投资建设一条对标国际领先水平、以IDM模式运营、拥有完全自主知识产权的12英寸高端模拟集成电路芯片生产线。10月19日晚间,士兰微正式发布公告,详细介绍了该项投资合作。  士兰集华为“12英寸高端模拟集成电路芯片制造生产线项目”的实施主体。士兰集华成立于2025年6月,目前尚未产生营业收入。  项目规划总投资200亿元  公告显示,为加快完善士兰微在半导体产业链的布局,公司与厦门市人民政府、厦门市海沧区人民政府于10月18日在厦门市签署《12英寸高端模拟集成电路芯片制造生产线项目战略合作协议》。同时,为落实前述《战略合作协议》,公司、公司全资子公司厦门士兰微与厦门半导体、新翼科技于同日签署《12英寸高端模拟集成电路芯片制造生产线项目之投资合作协议》。  依据上述协议,士兰集华作为“12英寸高端模拟集成电路芯片制造生产线项目”的实施主体,建设一条12英寸集成电路芯片制造生产线,产品定位为高端模拟集成电路芯片。该项目规划总投资200亿元,规划产能4.5万片/月,分两期实施。  一期项目投资100亿元(其中:资本金60.1亿元、占60.1%,银行贷款39.9亿元、占39.9%)建设主体厂房、配套库房、110KV变电站、动力站、废水站、大宗气站等公用辅助设施以及部分工艺设备购置,建成后形成月产能2万片;二期项目规划投资100亿元,建成后新增月产能2.5万片,达产后两期将合计实现月产能4.5万片(年产54万片)。  士兰集华一期项目资本金为60.1亿元,本次拟新增的注册资本为51亿元,由士兰微及厦门士兰微与厦门半导体、新翼科技以货币方式共同认缴,其中:公司和厦门士兰微合计认缴15亿元,厦门半导体认缴15亿元,新翼科技认缴21亿元。本次出资无溢价。本次增资完成后,士兰集华的注册资本将由0.1亿元增加至51.1亿元。一期项目资本金中剩余的9亿元由后续共同引进的相关其他投资方认缴出资。  二期项目规划投资100亿元,在一期项目的基础上实施(暂定其中60.1亿元为资本金投资,其余39.9亿元为银行贷款),具体方案需各方在完成相关审批流程后,另行签署投资协议等相关文件。  士兰集华目前注册资本为1000万元,全部由士兰微以货币方式出资。士兰集华目前处于项目前期筹备阶段,尚未产生营业收入。  上半年业绩同比扭亏  士兰微2025年半年报显示,公司专注于硅半导体、化合物半导体产品的设计与制造,向客户提供高质量的硅基集成电路、分立器件和化合物半导体器件产品。  2025年上半年,公司实现营业收入63.36亿元,同比增长20.14%;实现净利润2.65亿元,同比扭亏为盈。  对于下半年市场情况,士兰微在最新披露的投资者关系记录表中表示,下半年特别是第四季度是汽车市场的旺季,也是白电市场的旺季,公司会处在产销紧平衡的状态。其他消费、工业板块预估维持上半年状态。
关键词:
发布时间:2025-10-21 15:10 阅读量:410 继续阅读>>
一文了解<span style='color:red'>芯片生产</span>工艺流程
  在当今数字化的世界里,从智能手机、个人电脑到汽车和家用电器,几乎所有电子设备的核心都离不开一个微小而强大的部件——芯片,也称为集成电路(Integrated Circuit, IC)。它的制造过程是人类智慧和工程技术的结晶,其复杂和精确程度令人叹为观止。本文将带你走进神秘的芯片制造工厂(Fab),了解一粒沙子是如何经历“七十二变”,最终成为驱动我们现代生活的智能核心。  整个芯片制造流程极其复杂,可以概括为三大阶段:硅片制造、晶圆厂前道工序(Front-End-of-Line, FEOL)、晶圆厂后道工序(Back-End-of-Line, BEOL),以及最后的封装与测试。  第一阶段:基础构建 - 硅片制造  万丈高楼平地起,芯片的“地基”是高纯度的硅片,也称为晶圆(Wafer)。  1.原料提纯:芯片的起始原料是沙子(主要成分是二氧化硅 SiO₂)。沙子经过高温冶炼和化学方法,被提纯成纯度高达99.999999999%(9个9到11个9)的电子级多晶硅。这种纯度意味着每十亿个原子中,最多只允许有一个杂质原子。  2.长晶与切割:将高纯度多晶硅放入石英坩埚中,在高温下熔化。然后,以一颗单晶硅的“籽晶”作为引导,通过精密的控制,缓慢地旋转并向上提拉,生长成一根巨大的、具有完美原子排列的圆柱形单晶硅锭(Ingot)。这个过程被称为“柴氏法”(Czochralski method)。  3.晶圆成型:接下来,巨大的单晶硅锭被用内部涂有金刚石的线锯精确地切割成厚度不足1毫米的薄片,这就是晶圆。之后,晶圆的边缘会被打磨成圆形,并在特定位置加工出缺口(Notch)或平边(Flat),用于在后续生产中定位。最后,晶圆片会经过化学机械抛光(CMP),使其表面达到原子级的平整和光滑,像镜面一样。  第二阶段:核心构建 - 前道工序  这是在晶圆上真正“雕刻”晶体管等纳米级元器件的过程,也是技术含量最高、最复杂的部分。整个过程在一个被称为“洁净室”(Cleanroom)的环境中进行,其洁净度比医院手术室还要高出数千甚至数万倍,以防止微尘颗粒影响芯片的良率。前道工序的核心是光刻(Photolithography),并辅以刻蚀、薄膜沉积和离子注入等步骤,循环往复,层层叠加。  1.薄膜沉积 (Deposition):首先,根据设计需要在晶圆表面生长或沉积一层特定的薄膜材料,例如二氧化硅(绝缘层)或氮化硅等。这可以通过热氧化(将晶圆置于高温氧气或水蒸气环境中)或化学气相沉积(CVD)等方法实现。  2.涂胶 (Coating):在薄膜上均匀地旋涂一层对特定波长的光敏感的化学物质——光刻胶(Photoresist)。3.光刻 (Photolithography) / 曝光 (Exposure):这是整个芯片制造中最关键、最昂贵的步骤。它就像用投影仪和胶片“拍照”。  4.掩膜版 (Mask/Reticle):首先,工程师会将设计好的芯片电路图案制作成一块高精度的石英玻璃板,这就是掩膜版。  5.曝光:然后,用极紫外光(EUV)或深紫外光(DUV)作为光源,穿过掩膜版,将电路图案精确地投射到涂有光刻胶的晶圆表面。被光照射到的光刻胶会发生化学性质的改变。  6.显影 (Development):用特定的化学溶剂清洗晶圆,被光(或未被光,取决于光刻胶是正性还是负性)照射过的光刻胶被溶解和去除,这样,掩膜版上的电路图案就“复印”到了光刻胶层上。  7.刻蚀 (Etching):刻蚀就像是“雕刻”。以留下的光刻胶图案为保护层,使用化学气体(等离子体刻蚀)或液体(湿法刻蚀)剥离掉没有被光刻胶覆盖的薄膜区域,从而将电路图案永久地刻在下方的薄膜上。  8.去除光刻胶:完成刻蚀后,用化学方法剥离掉剩余的光刻胶,晶圆上就留下了所需的第一层电路图案。  9.离子注入 (Ion Implantation):为了改变特定区域硅的导电性能(形成N型或P型半导体),需要将预先选定的杂质原子(如硼、磷)加速到极高的能量,像子弹一样注入到晶圆的特定区域。这一步是制造晶体管“源极”和“漏极”的关键。上述“沉积-涂胶-曝光-显影-刻蚀-注入”的流程会重复几十甚至上百次,每一次都制作一层新的电路图案,层层叠加,最终在晶圆上构建出包含数十亿个晶体管的复杂三维结构。  第三阶段:互联构建 - 后道工序  如果说前道工序是在“盖房子”,那么后道工序就是在“铺设房子的水电管网和通信线路”。它负责制造金属导线,将前道工序中制作出的亿万个晶体管按照电路设计图连接起来,形成一个完整的电路网络。  1.金属互连 (Metallization):这个过程通常采用“铜制程”(Copper Interconnect)。首先在晶圆表面沉积一层绝缘介质(通常是低k电介质,以减少信号延迟),然后通过光刻和刻蚀在介质上刻出沟槽(Trench)和通孔(Via)。  2.电镀铜:接着,使用电化学沉积(ECD)的方法,将铜原子填充到这些沟槽和通孔中。  3.化学机械抛光 (CMP):最后,再次使用CMP技术,将晶圆表面多余的铜磨平,只留下嵌入在绝缘介质中的铜导线。  这个过程同样需要重复多层,形成一个极其复杂的多层金属互连网络,确保信号可以在不同晶体管之间高速、准确地传输。  第四阶段:封装与测试  经过数百道工序后,一张晶圆上已经制造出了数百个完全相同的芯片单元,称为“裸片”(Die)。  1.晶圆测试 (Wafer Probing):在将晶圆切割成单个芯片之前,会用带有数千根探针的测试机对每个裸片进行电学性能测试,筛选出不合格的产品。  2.切割 (Dicing):用精密的金刚石刀轮沿着预设的切割道将晶圆切割成独立的裸片。  3.封装 (Packaging):合格的裸片非常脆弱,无法直接焊接到电路板上。封装过程就是为裸片制作一个保护性的外壳,并引出管脚,以便与外部电路连接。  4.贴片 (Die Attach):将裸片固定到封装基板(Substrate)上。  5.引线键合 (Wire Bonding):用极细的金线或铜线,将裸片上的焊点(Pad)与封装基板上的引脚连接起来。更先进的技术如倒装芯片(Flip-chip)则通过微小的焊球(Bumps)直接连接。  6.塑封 (Molding):用环氧树脂将整个结构包裹起来,形成我们最终看到的黑色芯片外观。  7.最终测试 (Final Test):封装完成后,会对芯片进行全面的功能、性能和可靠性测试,确保其在各种工作条件下(如不同温度、电压)都能正常工作。只有通过所有测试的芯片,才会被打上型号和批次,送往电子产品制造商手中。  从平凡的沙子到驱动信息时代的强大引擎,芯片的诞生是一段漫长而精密的旅程。它融合了物理、化学、光学、材料科学和精密机械等多个领域的顶尖技术。每一个环节的精度都以纳米(十亿分之一米)来衡量,任何一个微小的瑕疵都可能导致整个芯片的报废。正是这种对极致精密的追求,才使得人类能够不断突破计算能力的极限,创造出更加智能和便捷的未来。
关键词:
发布时间:2025-09-04 17:17 阅读量:793 继续阅读>>
全球首条超宽禁带半导体高频滤波<span style='color:red'>芯片生产</span>线即将试生产
  近日,全球首条超宽禁带半导体高频滤波芯片生产线即将试生产,标志着中国在半导体领域实现了重大技术突破,对推动5G/6G通信、物联网及高端制造业发展具有深远意义。  该生产线由福建晶旭半导体科技有限公司投资建设,总投资16.8亿元,占地136亩,专注于基于氧化镓(β-Ga₂O₃)压电薄膜新材料的高频滤波器芯片研发与生产。氧化镓作为第四代超宽禁带半导体材料,其禁带宽度(4.9eV)远超氮化镓(3.39eV)和碳化硅(3.2eV),具备更高的击穿场强(8MV/cm)和更低的功耗特性。这一材料的应用,将彻底解决传统钽酸锂滤波器在3GHz以上频段的失效问题,填补国内在氧化镓压电薄膜新材料领域的空白。  晶旭半导体技术团队自2005年起深耕声波滤波器领域,拥有100余项化合物单晶薄膜材料专利。其氧化镓异质外延技术通过在蓝宝石衬底上生长高质量氧化镓薄膜,避免了昂贵铱坩埚的使用,将材料成本降低60%以上。这一技术突破不仅实现了材料自主,还为芯片量产奠定了成本优势。  高频滤波器是5G通信中的核心器件,直接影响信号传输的稳定性和效率。全球首条氧化镓高频滤波芯片生产线的试生产,将打破海外企业在这一领域的垄断,推动中国5G/6G通信设备、智能手机及物联网设备的自主可控发展。  当前,全球半导体产业正处于技术迭代的关键期。中国通过布局氧化镓等第四代半导体材料,有望在5G/6G、量子计算等新兴领域实现技术领先,摆脱对传统硅基芯片的依赖。  随着全球首条氧化镓高频滤波芯片生产线的试生产,中国有望在高频通信芯片领域掌握更多标准制定权,推动全球通信产业向更高频段、更低功耗的方向发展。  全球首条超宽禁带半导体高频滤波芯片生产线的试生产,是中国半导体产业从“追赶”到“领跑”的重要里程碑。这一项目的成功,不仅将填补国内技术空白,还将推动全球5G/6G通信、物联网及高端制造业的革新。未来,随着技术的不断成熟和产业链的完善,中国有望在全球半导体产业格局中占据更加重要的地位。
关键词:
发布时间:2025-06-18 11:51 阅读量:870 继续阅读>>
德州仪器计划大规模将GaN<span style='color:red'>芯片生产</span>由6英寸转换成8英寸
  据韩媒报导,模拟芯片大厂德州仪器(TI)的一位高层表示,该公司正在将其多个晶圆厂生产的6英寸氮化镓(GaN)芯片,转移到8英寸晶圆厂来生产。  报导指出,德州仪器韩国公司经理Jerome Shin在首尔举行的新闻发布会上表示,德州仪器正在达拉斯和日本会津准备兴建8英寸晶圆厂,这将使其能够提供更具价格竞争力的GaN芯片。  JeromeShin指出,人们普遍认为GaN芯片比碳化硅(SiC)芯片更昂贵,但这种看法自2022年以来发生了转变。因为德州仪器正在将其生产由6英寸晶圆厂转换为8英寸晶圆厂,而生产更大的晶圆代表着每个晶圆上都有更多的芯片,这可以提高公司的生产力,也使量产的GaN芯片价格能更加便宜。  而现阶段,GaN芯片的价格已经低于SiC芯片。未来,德州仪器在达拉斯和日本会津工厂的改造完成后,将能够进一步能够提供更便宜的解决方案。达拉斯工厂的扩产预计将于2025年完成,不过JeromeShin并未透露日本会津工厂的时间表。  不过,有市场人士表示,德州仪器这样的计划可能会导致GaN芯片价格全面下跌。目前,德州仪器也正在将电源管理芯片的生产从8英寸晶圆厂转变为12英寸晶圆。这动作也已经使产业间的电源管理芯片价格下跌。不过,将电源管理芯片的生产从8英寸晶圆厂转变为12英寸晶圆这可使得德州仪器节省10%以上的成本。
关键词:
发布时间:2024-03-22 15:41 阅读量:1060 继续阅读>>
台积电预计2030年实现1纳米制程<span style='color:red'>芯片生产</span>
  台积电日前在2023年IEEE国际电子元件会议(IEDM)上,发布进军至1nm制程的产品规划蓝图,这一计划与英特尔去年透露的规划类似。  根据规划,台积电将并行推动3D封装和单芯片封装的技术路径的发展。预计在2025年,台积电将完成N2和N2P节点,使得采用3D封装的芯片晶体管数量超过5000亿个,而采用传统封装技术的芯片晶体管数量超过1000亿个。  台积电计划在2027年达到A14节点,并在2030年达到A10节点,即1nm制程芯片。届时,采用台积电3D封装技术的芯片晶体管数量将超过1万亿个,而采用传统封装技术的芯片晶体管数量将超过2000亿个。  据悉,台积电将使用EUV极紫外光刻、新通道材料、金属氧化物ESL、自对齐线弹性空间、低损伤低硬化低K铜材料填充等等一系列新材料、新技术,并结合CoWoS、InFO、SoIC等一系列封装技术。  台积电在会议上还透露,其 1.4nm 级工艺制程研发已经全面展开。同时,台积电重申,2nm 级制程将按计划于 2025 年开始量产。  尽管台积电的发展速度有所放缓,但其在半导体代工领域的竞争对手,如三星等公司,仍在不断努力追赶台积电在先进制程领域的领先地位。今年六月,三星代工公布了其最新的工艺技术发展路线图,计划在2025年推出2纳米制程的SF2工艺,并在2027年推出1.4纳米制程的SF1.4工艺。如果这些计划能够如期实现,三星有可能在与台积电相似的时间节点上实现类似的先进工艺水平。
关键词:
发布时间:2023-12-29 14:52 阅读量:1943 继续阅读>>
缺芯将致美汽车减产130万辆,英特尔启动汽车<span style='color:red'>芯片生产</span>计划!
全球汽车产业缺“芯”危机仍在扩大。数据研究公司IHS Markit表示,美国德克萨斯州今年2月遭受冬季风暴侵袭,加上全球晶片供应短缺,预料导致汽车制造商首季度产量大幅减少约130万辆。在此背景下,当地时间12日,美国白宫将就芯片短缺问题举行线上峰会。据白宫透露,参加者包括谷歌母公司Alphabet、戴尔、惠普、三星、AT&T、英特尔和通用汽车等近20家公司的首席执行官,以及多个关键部门的政府官员。其中美国三大汽车制造商——通用、福特和克莱斯勒的出席,说明当下美汽车行业正积极寻求政府帮助,以采取行动解决芯片危机。在当天峰会上,芯片巨头英特尔在重返晶圆代工业务之际,该公司执行长格尔辛格(Pat Gelsinger)透露,英特尔正开始商谈为汽车制造商生产车用芯片,缓解通用、福特等车厂闲置问题。据路透社报道,英特尔正在与汽车芯片供应商进行谈判,即在英特尔的工厂生产车用芯片事宜,目标6到9个月内生产芯片。格尔辛格表示:“我们希望可以缓解问题,且不需要三到四年的设厂,但可能需要六个月的时间,新产品就可以通过现有的一些流程认证……我们已经开始与一些关键零部件供应商展开合作。”不过,格尔辛格没有透露部件供应商的名字,但表示工作可以在英特尔在俄勒冈州、亚利桑那州、新墨西哥州、以色列或爱尔兰的工厂进行。截至4月初,美国三大车企均有生产线因“缺芯”而不同程度停产,部分日本车企的北美工厂也受到冲击。早前有报道称,美国汽车行业组织——汽车创新联盟曾敦促美国政府提供帮助,并警告称全球半导体短缺可能导致今年汽车产量减少128万辆,并将在未来6个月中断生产。据悉,这一组织里涵盖了几乎所有在美国设有工厂的主要汽车制造商,包括通用、福特、大众、丰田和现代汽车。可以说这一“敦促”是全美汽车工厂的统一心声。注:图文源自网络,如有侵权请联系删除!
关键词:
发布时间:2021-04-13 00:00 阅读量:1944 继续阅读>>
英特尔与三星确有商讨<span style='color:red'>芯片生产</span>,但只是低端芯片代工?
  据Tom's Hardware报道,消息人士指出,英特尔的确与三星在芯片生产方面有过商讨,但讨论的只是较为低端的芯片组代工,具体使用的工艺还未对外透露。  近日,据Sedialy报道,为了缓解CPU缺货的尴尬,英特尔已经与三星开启有关CPU代工的首次商讨。报道称,目前三星已经正式同意使用14nm工艺为英特尔代工“Rocket Lake”微架构CPU,该微处理器将于2021年发布。  消息人士指出,英特尔和三星正在谈判中,但谈判的中心是更低端的产品,很可能是更容易外包的芯片组。鉴于英特尔去年因为14 nm产能不足而将芯片组重新使用22nm工艺生产,很有可能三星会使用22nm工艺为英特尔代工芯片组产品。  值得一提的是,英特尔14nm++工艺的晶体管密度要比三星和台积电的14nm都要高。  英特尔每个处理器生产一个芯片组,因此小型芯片占据了该公司晶圆输出和封装及测试容量的很大一部分,因此将芯片组生产外包到三星将是一个很不错的选择。这种方法还能使英特尔能够将自己的生产能力集中在高利润产品上。另外,将芯片组外包到韩国三星厂还能避开中美贸易战中提高的关税。  2017年12月,英特尔曾公开表示愿意在未来使用第三方代工厂:“除了扩展英特尔自己的制造能力之外,我们将继续选择性地使用代工厂用于某些对业务有意义的技术。近二十年来,代工厂的使用一直是英特尔的惯例”。在上个月的投资者会议上,英特尔又重申了这一信息。
关键词:
发布时间:2019-06-21 00:00 阅读量:2279 继续阅读>>

跳转至

/ 1

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码