拆解上海永铭低ESR固态电容——从参数优势到实测表现,如何为电源<span style='color:red'>设计</span>“降温增效”?
  引言  各位电源工程师,你是否曾在调试样机时,被居高不下的纹波和烫手的电容困扰?尤其在追求高功率密度的今天,电容的ESR和纹波电流能力,已成为决定设计成败的隐形门槛。本文将以永铭VPX/VPT系列为例,进行一场深度技术剖析,看它如何用实实在在的数据解决这些痛点。  永铭解决方案与优势  以一款典型的65W 2C2A氮化镓快充为例,其在密闭空间内需处理高达数百kHz的开关频率。若使用普通固态电容(ESR约40mΩ),其在高频下的损耗不容小觑。我们曾观测到,在满载输出时,此类电容核心温度可超过85℃,这不仅带来热安全风险,更会因高温导致容值衰减、ESR攀升,长期可靠性存疑。  问题的核心在于ESR。损耗功率P_loss = I_rms² × ESR。当开关频率升至100kHz,容抗(Xc)急剧减小,ESR成为阻抗的主要部分。以一个ESR 40mΩ的电容承载2A纹波电流计算,其单颗损耗就高达0.16W。在紧凑空间内,这部分热量极难散发。永铭的方案是将ESR降至20mΩ,同等条件下损耗降至0.08W,发热量直接减半,从根源上解决了温升问题。  - 永铭解决方案与工艺优势:材料与结构的双重革新 -  永铭的低ESR并非偶然,而是系统性工程的结果:  电解质创新:采用专利的高电导率聚合物,离子电导率提升超30%,确保了高频下极低的离子迁移阻抗。  阳极箔优化:通过电化学刻蚀形成隧道状孔洞结构,使得有效表面积最大化,提升了电荷的瞬时吞吐能力。  低内阻构建:从铝壳、胶塞到导针的全链路低阻设计,减少了不必要的寄生电阻和电感。  - 数据验证与可靠性说明:用数据说话 -  我们对比测试了永铭VPX 25V 100μF规格的固态电容在回流焊前后的测试数据,ESR变化率整体控制在。其ESR值增幅仅为15.1%。证明产品卓越的热稳定性与工艺可靠性,能够确保在SMT贴片后依然保持稳定的电气性能。  实际应用案例  如倍思65W氮化镓快充中采用了永铭VPX系列,其高效的散热和稳定的输出,正是这些性能参数在终端产品上的完美体现。  结语  对于追求极致性能的工程师而言,一个电容的ESR值,可能就是整个系统性能的胜负手。永铭电子深谙此道,其“电容应用,有困难找永铭”的定位,正是基于解决深度技术问题的能力。通过提供ESR低至20mΩ的顶尖产品,永铭正稳步实现其 “取代国际同行,成为头部品牌” 的产品目标,为国内电源设计师提供更优、更可靠的国产化芯片组件解决方案。
关键词:
发布时间:2025-11-04 13:41 阅读量:215 继续阅读>>
LDO的工作原理以及<span style='color:red'>设计</span>LDO应注意的问题
  低压差线性稳压器(LDO)是一种常见的电源管理集成电路,用于将不稳定输入电压转换为稳定的输出电压。LDO具有简单的构造和高稳定性,被广泛应用于各种电子设备中,如移动电话、计算机、传感器等领域。  1.LDO的工作原理  LDO的主要功能是通过调节输出端电压来保持一个稳定的电压差(或输出电压)与参考电压之间的比值。其基本工作原理如下:  反馈回路: LDO包含一个反馈回路,其中包括一个误差放大器、一个稳压参考电压源和一个功率晶体管。  比较输入和参考电压: 误差放大器比较输出端的电压与内部的参考电压,并产生误差信号。  控制功率晶体管: 根据误差信号的大小,误差放大器控制功率晶体管的导通或截止,调节输出端的电压以维持稳定的输出电压。  负载调节: LDO在负载变化时能够自动调节输出电压,确保输出端的电压稳定。  2.设计LDO应注意的问题  2.1 输入输出差压  最小输入输出差压: 确保LDO正常工作需要满足最小输入输出差压要求,避免出现失调或不稳定情况。  2.2 稳定性  频率补偿: 正确选择频率补偿元件以确保LDO的稳定性,避免震荡或噪声干扰。  负载容量: 在设计中考虑负载变化对LDO的影响,选择适当的负载电容以提高稳定性。  2.3 温度漂移  热稳定性: 考虑LDO在不同温度下的稳定性,选择具有良好热稳定性的元件和材料。  2.4 功耗和效率  静态功耗: 了解LDO的静态功耗情况,尽量减少功耗以提高效率。  效率优化: 在设计中考虑功率效率,选择合适的电阻值和负载容量以提高效率并减少功耗。  2.5 过压和过流保护  过压保护: 添加过压保护电路以防止输入电压超过规定范围。  过流保护: 集成过流保护电路来保护LDO和负载设备免受过电流损害。  2.6 电磁干扰  EMI滤波: 添加适当的电磁干扰(EMI)滤波器以减少干扰并提高系统稳定性。  2.7 负载调节  负载调节能力: 确保LDO能够快速而准确地调节输出电压以适应不同负载条件。
关键词:
发布时间:2025-10-31 15:47 阅读量:260 继续阅读>>
避免入坑!54条电磁兼容<span style='color:red'>设计</span>指导建议
  让AMEYA360带您了解一下54条电磁兼容设计指导建议吧!  1、给器件的放置位置和放置方向足够的考虑。  2、避免时钟信号谐波重叠,给每个时钟信号制订出谐波表。  3、时钟信号的环路要尽可能小。  4、如可能的话,要使用多层PCB,要设置专门的电源和地线层。  5、所有的高频信号线必须邻近参考平面。  6、使信号层与参考层的间距尽可能小(小于10密尔)。  7、高于20MHz的PCB应当有两个以上的地线面。  8、当电源面和地线面相临近的情形,要使电源面的边缘向内缩进20倍的两个层面间距大小。  9、如有可能,将时钟信号线布线埋在电源和地线层中间层上。  10、在电源和地线面上不要开槽。  11、如果电源或地线要分割的话,走线不要跨越缝隙地带  12、在时钟线的驱动端加30到70欧姆的电阻负载以平缓信号的上升/下降时沿  13、将时钟信号和高速电路放置在远离I/O的区域  14、给DIP封装的器件配置至少两个等值的去耦电容,给QFP封装的器件配置至少4个等值的去耦电容。对高频的/高功率的/噪声敏感的IC器件要配置多个去耦电容。  15、对于高于50MHz的PCB,可以适当考虑使用埋电容的方法来实现去耦。  16、通过端接匹配技术实现阻抗控制布线。  17、在阻抗控制布线的PCB上,除非两个走线层的参考层相同,否则不要对走线进行换层。  18、在非阻抗控制的PCB上,当时钟信号线布线换层时,要在换层的过孔处放置过孔或电容,以实现高频电流回路的连续。  19、所有的走线当线长大于或等于信号上升沿/下降沿(以ns计算)时,必须给  这根走线加串联匹配电阻(通常是33欧姆)。  20、对所有的线长大于或等于信号上升沿/下降沿(以ns计算)的网线进行仿真分析  21、在I/O区域连接逻辑地到机壳(要用非常低阻抗的连接)地。  22、在时钟和晶体振荡器的地方将地线和机壳地连接起来。  23、根据设计需要往往要额外另外增加到机壳地的连接。  24、子板(有高频,噪声器件,或外接电缆)与主板或机壳的连接必须仔细处理(不要只是依赖连接器件上的地线引脚)。  25、对所有的I/O线提供共模滤波器,将所有的I/O线在PCB上指定的I/O区捆绑在一起。  26、用在I/O滤波器的并联电容、旁路电容必须有非常低的接机壳地阻抗。  27、在直流电源线(共模和差模)上使用电源输入滤波器。  28、许多产品是塑料(壳子)封装的,这需要增加额外的金属参考地。  29、如哪里有需要可考虑使用板级器件屏蔽。  30、将所有的散热器接地。  31、能用低速芯片就不用高速的,高速芯片用在关键地方。  32、可用串一个电阻的办法,降低控制电路上下沿跳变速率。  33、尽量为继电器等提供某种形式的阻尼。  34、使用满足系统要求的最低频率时钟。  35、时钟产生器尽量靠近到用该时钟的器件。石英晶体振荡器外壳要接地。  36、用地线将时钟区圈起来,时钟线尽量短。  37、I/O驱动电路尽量靠近印刷板边,让其尽快离开印刷板。对进入印制板的信号要加滤波,从高噪声区来的信号也要加滤波,同时用串终端电阻的办法,减小信号反射。  38、MCD无用端要接高,或接地,或定义成输出端,集成电路上该接电源地的端都要接,不要悬空。  39、闲置不用的门电路输入端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端。  40、印制板尽量使用45折线而不用90折线布线以减小高频信号对外的发射与耦合。  41、印制板按频率和电流开关特性分区,噪声元件与非噪声元件要距离再远一些。  42、单面板和双面板用单点接电源和单点接地、电源线、地线尽量粗,经济是能承受的话用多层板以减小电源,地的容生电感。  43、时钟、总线、片选信号要远离I/O线和接插件。  44、模拟电压输入线、参考电压端要尽量远离数字电路信号线,特别是时钟。  45、对A/D类器件,数字部分与模拟部分宁可统一下也不要交叉。  46、时钟线垂直于I/O线比平行I/O线干扰小,时钟元件引脚远离I/O电缆。  47、元件引脚尽量短,去耦电容引脚尽量短。  48、关键的线要尽量粗,并在两边加上保护地。高速线要短要直。  49、对噪声敏感的线不要与大电流,高速开关线平行。  50、石英晶体下面以及对噪声敏感的器件下面不要走线。  51、弱信号电路,低频电路周围不要形成电流环路。  52、任何信号都不要形成环路,如不可避免,让环路区尽量小。  53、每个集成电路一个去耦电容。每个电解电容边上都要加一个小的高频旁路电容。  54、用大容量的钽电容或聚酷电容而不用电解电容作电路充放电储能电容。使用管状电容时,外壳要接地。
关键词:
发布时间:2025-10-23 16:38 阅读量:305 继续阅读>>
变压器<span style='color:red'>设计</span>:在矛盾中寻找动态平衡的艺术
  当我们拆解任何一台现代电子设备时,总会发现那个被铜线缠绕的磁性元件——变压器。它看似简单,却是电源系统中最为复杂的定制化组件之一。在实验室里,经常能听到工程师们的争论:“这个设计方案是否已经最优?”而真相是,变压器设计从来不存在普适的最优解,只有针对特定场景的暂时平衡。  多维约束下的设计困境  设想一位电源工程师面临的设计挑战:客户要求变压器在-40℃至125℃环境下工作,效率必须高于98%,同时成本不能超过3美元,体积需缩小30%。这就像要求一位建筑师在10平方米内建造兼具游泳池、健身房和花园的别墅。  在某个实际案例中,工程师为服务器电源设计的变压器最初采用传统EE型磁芯,虽然成本低廉,但效率始终无法突破96%。经过三个月的反复试验,团队最终选择了平面变压器与低损耗磁芯组合,效率成功提升至97.5%,但成本上升了40%。这种性能与成本的拉锯战,每天都在设计实验室上演。  材料科学的隐形边界  变压器设计的自由度首先被材料科学限定。第三代半导体技术的兴起使得开关频率从传统的几十kHz跃升至MHz级别,这对磁芯材料提出了全新要求。纳米晶、非晶材料与传统铁氧体在不同频率下各显神通:纳米晶在100kHz以上频段展现出色表现,但其脆弱的机械特性却成为自动化生产的噩梦。  漆包线的选择同样充满妥协。厚漆膜线材固然耐压性能优异,却会降低铜线的填充系数,导致窗口利用率下降。在汽车电子领域,工程师甚至需要评估绕组材料在热胀冷缩过程中的应力变化,这些微观层面的考量常常成为设计成败的关键。  热管理的艺术  大功率变压器的散热设计已从简单的热传导演变为多物理场耦合的复杂课题。某通信设备厂商的5G基站电源模块中,变压器通过埋入式热管将热量导向外壳,再配合相变材料吸收瞬时热冲击。这种多层次热管理方案使功率密度提升了三倍,但设计周期却延长了四个月。  温度对磁性元件的影响非线性。实验数据显示,磁芯损耗在80℃至100℃区间的增长率是60℃至80℃的两倍。这种特性使得简单的“降额设计”在某些场景下完全失效,必须采用实时温度补偿电路进行动态调整。  工业化生产的现实考量  实验室原型与量产产品之间存在巨大鸿沟。某消费电子巨头曾设计出性能卓越的变压器方案,却在量产时发现绕线张力控制偏差导致0.1%的产品存在匝间短路。这种看似微小的缺陷,在百万级出货量下就意味着上千台设备的故障。  自动化生产对变压器结构提出严苛要求。磁芯必须能够承受机械臂的抓取力度,引脚间距需要兼容贴片机的精度极限,甚至绝缘胶带的缠绕方向都必须标准化。这些制造约束常常迫使设计师放弃性能更优的方案,转向更适合规模化生产的设计。  成本方程的多个变量  在竞争激烈的市场环境中,变压器的成本优化已进入“分毫之争”。然而,精明的工程师正在重新定义成本概念:某个方案虽然材料成本高出15%,但通过简化装配工序,总生产成本反而降低8%。这种全生命周期成本分析正在成为行业新标准。  供应链韧性也成为设计考量因素。某家电企业曾因执着于特定尺寸的磁芯,在原材料短缺时期被迫停产两周。教训之后,他们的新规范要求所有变压器设计必须提供至少两个磁芯供应商的兼容方案。  创新技术的破局可能  新兴技术正在打破传统设计边界。三维打印技术允许制造传统方法无法实现的磁芯结构,某研究机构通过梯度密度设计成功将涡流损耗降低40%。人工智能辅助设计平台能够在一小时内评估数万种参数组合,找出人类工程师容易忽略的最优区间。  集成化是另一个发展方向。将变压器与电感器、电容器融合为单一电磁元件,这种“拓扑集成”理念可能在未来五年内重塑电源架构。不过,这些创新都面临同样的考验:如何跨越从实验室奇观到工业产品的“死亡之谷”。  设计哲学的演变  变压器设计的本质是在相互矛盾的需求间寻找平衡点。这个平衡点随着技术演进不断漂移:昨天追求极致效率,今天强调成本控制,明天可能注重环境友好。优秀的设计师如同经验丰富的舵手,在技术、市场和制造的多重浪涛中把握方向。  真正的专业智慧体现在懂得何时坚持、何时妥协。在某个医疗电源项目中,团队拒绝客户缩小体积的要求,因为保持足够的爬电距离关乎患者安全。这种基于专业知识的坚持,往往比盲目满足所有需求更能体现工程价值。  变压器设计就像一场没有终点的优化之旅,每个方案都是特定时空条件下的暂时平衡。或许,承认“没有最优解”这个事实,才是我们寻找更好解决方案的真正起点。
关键词:
发布时间:2025-10-22 10:15 阅读量:299 继续阅读>>
Cadence 电子<span style='color:red'>设计</span>仿真工具标准搭载村田制作所的产品数据
  株式会社村田制作所(以下简称“村田”)已在 Cadence Design Systems, Inc.(总部:美国加利福尼亚州,以下简称“Cadence”)提供的 EDA 工具(1) “OrCAD X Capture™”以及“AWR Design Environment™”中标准搭载了部分产品数据。由此,在 EDA 工具中即可选择村田产品并开展仿真,可用于应对用户多样化的设计需求与规格的选项较以往进一步增多,从而有助于推动电路设计的高阶化。  (1)EDA 工具:电子设计自动化(Electronic Design Automation)工具的总称。指在计算机上进行电子电路设计时,用于对所设计电路进行评价与验证的仿真工具。  近年来,伴随人工智能与物联网的发展,电子设备的多功能化与高性能化不断推进,装载于电路板上的电路也日趋复杂。为减少设计失误、缩短开发周期并降低试制成本,电子电路设计领域正加速引入数字孪生(2),基于 EDA 工具的设计正逐步成为主流。针对不同用途与要求选择合适的元器件,是实现电子电路设计高阶化所需的重要一环。因此,人们期待在仿真工具中进一步扩充可选电子元器件的数据库。  (2)数字孪生:基于现实空间(物理空间)的信息,在数字空间(网络空间)中再现对应的虚拟现实的方法。  为此,村田与 Cadence 开展协作,在 Cadence 具有代表性的 EDA 工具“OrCAD X Capture”以及“AWR Design Environment”中标准搭载了村田的产品数据。  通过此次标准搭载,用户可直接在 EDA 工具中选择村田产品。以往如需在 EDA 工具中使用村田产品,必须从村田网站下载产品数据并手动安装到工具中,费时且耗力。现在上述流程已无需执行,可用于应对用户多样化设计需求与规格的选项较以往进一步增多,有助于电子电路设计的高阶化。  今后,村田将继续与在 EDA 工具领域位居前列的企业之一 Cadence 展开协作,持续扩充标准搭载的产品数据与支持的工具。同时也在考虑引入产品数据自动更新功能,以期为电子电路设计的高阶化与便利性提升作出贡献。
关键词:
发布时间:2025-10-21 14:22 阅读量:260 继续阅读>>
PCB<span style='color:red'>设计</span>信号完整性的常见问题总结
  日益增多的高频信号设计与稳步增加的电子系统性能紧密相连。随着系统性能的提高,PCB设计师的挑战与日俱增:更微小的晶粒,更密集的电路板布局,更低功耗的芯片要求。技术的进步总是伴随着一系列问题。随着系统性能的提升和高速设计的采纳,一些问题必须在设计环境中进行处理。  下面,我们来总结一下面临的挑战:  信号质量  IC制造商倾向于更低的核心电压和更高的工作频率,这就导致了急剧上升的边缘速率。无端接设计中的边缘速率将会引发反射和信号质量问题。  串扰  在高速信号设计中,密集路径往往会导致串扰——在PCB上,走线间的电磁耦合关联现象。  串扰可以是同一层上走线的边缘耦合,也可以是相邻层上的宽边耦合。耦合是三维的。与并排走线路径相比,平行路径和宽边走线会造成更多串扰。宽边耦合(顶部)相比于边缘耦合(底部)  辐射  在传统设计中的快速边缘速率,即使使用与先前相同的频率和走线长度,也会在无端接传输线上产生振铃。这从根本上导致了更高的辐射,远远超过了无终端传输线路的FCC/CISPR B类限制。10纳秒(左)和1纳秒(右)的边缘速率辐射  设计解决方案  信号和电源完整性问题会间歇出现,很难进行判别。所以最好的方法,就是在设计过程中找到问题根源,将之清除,而不是在后期阶段试图解决,延误生产。通过叠层规划工具,能更容易地在您的设计中,实现信号完整性问题的解决方案。  电路板叠层规划  高速设计的头等大事一定是电路板叠层。基板是装配中最重要的组成部分,其规格必须精心策划,避免不连续的阻抗、信号耦合和过量的电磁辐射。在查看您下次设计的电路板叠层时,请牢记以下提示和建议:  - 所有信号层需相邻并紧密耦合至不间断的参考平面,该平面可以创建一个明确的回路,消除宽边串扰。  每个信号层的基板都邻接至参考平面  - 有良好的平面电容来减少高频中的交流阻抗。紧密耦合的内电层平面来减小顶层的交流阻抗,极大程度减少电磁辐射。  - 降低电介质高度会大大减少串扰现象,而不会对电路板的可用空间产生影响。  - 基板应能适用一系列不同的技术。例如:50/100欧姆数位,40/80欧姆DDR4,90欧姆USB。  布线和工作流程  精心策划叠层后,下一步便需关注电路板布线。基于设计规则和工作区域的精心配置,您能够最高效成功地对电路板进行布线。以下这些提示,能帮助您的布线更加容易,避免不必要的串扰、辐射和信号质量问题:  - 简化视图,以便清楚查看分割平面和电流回路。为此,首先确定哪个铜箔平面(地或电源)作为每个信号层的参考平面,然后打开信号层和内电层平面同时查看。这能帮助您更容易地看到分割平面的走线。多重信号层(左)、顶层和相邻平面视图(右)  - 如果数字信号必须穿越电源参考平面,您可以靠近信号放置一或两个去耦电容(100nF)。这样,就在两个电源之间提供了一个电流回路。  - 避免平行布线和宽边布线,这会比并排布线导致更多串扰。  - 除非使用的是同步总线,否则,平行区间越短越好,以减少串扰。为信号组留出空间,使其地址和数据间隔是走线宽度的三倍。  - 在电路板的顶层和底层使用组合微带层时要小心。这可能导致相邻板层间走线的串扰,危及信号完整性。  - 按信号组的最长延迟为时钟(或选通)信号走线,这保证了在时钟读取前,数据已经建立。  - 在平面之间对嵌入式信号进行走线,有助于辐射最小化,还能提供ESD保护。
关键词:
发布时间:2025-10-14 15:29 阅读量:353 继续阅读>>
上海雷卯:工业网口防护方案:EtherCAT 协议的静电浪涌防护<span style='color:red'>设计</span>
  一、工业常用网口协议分类  工业场景中,网口协议需兼顾“通信稳定性”“同步精度”“抗干扰能力” 三大核心需求,不同协议因设计目标差异,在防护方案选型上存在本质区别,主流分类如下:  实时控制类协议:以 EtherCAT、Profinet IRT 为代表,核心优势是纳秒至微秒级同步精度,支持数千个从站级联,适用于汽车生产线、光伏逆变器集群等需精准协同的场景;防护需重点关注 “低寄生电容”“无额外延迟”,避免破坏同步逻辑。  通用工业以太网协议:以 Modbus TCP、Ethernet/IP 为代表,基于传统 TCP/IP 架构改良,兼容性强但实时性较弱(毫秒级延迟),适用于楼宇自控、普通机床监控等场景;防护侧重 “低成本”“易集成”,对容值、延迟要求相对宽松,上海雷卯电子针对此类场景也推出了高性价比防护器件组合。  高速传输类协议:以 Glink(分高速 / 通用型)、10Gigabit Ethernet 为代表,侧重大数据量高速传输(如工业相机图像、风电设备状态监测数据);高速型需兼顾 “低延迟” 与 “高带宽”,通用型可优先平衡成本与基础防护。  在工业分布式控制场景中,EtherCAT 协议因支持 65535 个从站、纳秒级同步精度,成为汽车生产线、光伏设备、风电变桨系统的核心通信协议;这类场景中,电机启停浪涌、粉尘静电、户外雷击感应等干扰,常导致 EtherCAT 从站断连、帧滑动延迟超标的问题 —— 其根源在于防护方案未匹配 EtherCAT 的 100Base-TX 差分信号特性与拓扑需求。本文结合雷卯 EMC 技术方案,拆解 EtherCAT 协议的专属防护逻辑。  二、EtherCAT 防护的核心约束:标准与协议  EtherCAT 接口需同时满足工业 EMC 强制标准与协议自身特性要求,二者共同决定防护器件选型:  1. 静电浪涌强制标准  静电(ESD):需符合 IEC 61000-4-2 标准,达到Criterion A 级(无通信中断、无性能下降),具体指标为接触放电 8kV、空气放电 15kV;  浪涌:IEC 61000-4-5 电源端口 ±4kV(线 - 地)、信号端口 ±2kV(线 - 线),干扰波形为 8/20μs(工业场景最常见的感性负载启停浪涌波形);  2. 协议特性限制  寄生电容敏感:100Base-TX 差分信号(TX+/TX-)对防护器件的单个寄生电容临界值为 5pF,容值超标会导致帧滑动处理延迟超 500ns,直接破坏从站同步精度;  拓扑兼容性:EtherCAT冗余环网自愈时间需 < 50ms,防护电路(如 GDT、TVS 的响应时间)不能引入额外延迟(需 < 1μs);  PHY 芯片耐受:多数 EtherCAT PHY 芯片(如 TI DP83848)耐压≤18V,防护器件钳位电压需严格控制在此阈值内,避免芯片过压损坏。  三、EtherCAT 分场景防护方案:  从普通到强干扰环境  场景 1:普通工业环境  干扰特点:粉尘静电积累(±5kV)、小型电机启停干扰(<±1kV),无直接雷击风险;  核心需求:平衡信号保真与成本,无需过度防护;  雷卯适配方案:  ①信号端防护:雷采用卯二级防护设计,保证百兆网口信号完整性与高温环境下可靠工作,符合IEC 61000-4-2 4 级标准(接触放电 8kV、空气放电 15kV)。  ② 电源端防护:并联SMDJ26CA TVS 管(钳位电压 42V,适配 24V 工业电源,预留电源波动余量,如用40V DCDC 可采用雷卯3LM26CA或3LM33CA 这种回扫型的钳位电压更低的TVS二极管),阻断电源侧浪涌串入。  场景 2:强干扰环境(汽车焊装线、电机集群)  干扰特点:大功率电机启停浪涌(±3kV)、车身静电(±12kV),共模干扰耦合明显;  核心需求:大电流泄放 + 信号保真双兼顾;  雷卯分级防护方案:  ① 第一级:浪涌泄放:RJ45 端口串联雷卯 3R090-5S GDT(气体放电管),击穿电压 90V,可泄放90%浪涌电流,避免大能量直接冲击 PHY 芯片;  ② 第二级:静电钳位 + 残压控制:后置GBLC03C,将残压严格控制在安全阈值内,同时保证差分信号无失真。  EtherCAT 防护的核心是 “在 EMC 合规与信号同步精度间找平衡”—— 既要通过分级防护(GDT 泄放 + TVS 钳位)满足 IEC 61000-4 系列标准,又要严格控制防护器件的寄生电容(≤5pF / 单个)与延迟(<1μs),避免破坏协议的纳秒级同步逻辑;上海雷卯电子的方案已通过多家工业设备厂商验证,可直接落地应用。  在工业通信领域,不同协议的防护逻辑需紧扣其核心特性—— 除 EtherCAT 外,另一类核心协议 Glink 因分为高速与通用两大类型,防护需求差异显著(高速型侧重 “低延迟保同步精度”,通用型侧重 “低成本与兼容性”)。下一篇雷卯 EMC 小哥将聚焦这两类 Glink 协议的场景化防护方案,进一步拆解 “协议特性决定防护选型” 的核心逻辑。
关键词:
发布时间:2025-10-10 15:31 阅读量:331 继续阅读>>
太阳诱电:压电执行器振动技术带来的扁平化<span style='color:red'>设计</span>的可能性
  这次将特别介绍压电(Piezo)器件,介绍其应用装置之一“叠层压电振动片”,究竟什么是压电器件?叠层压电振动片发挥作用的构造是什么?本系列为您讲清楚。  也许可以具备这种功能!叠层压电振动片的未来  若将上面提到的叠层压电振动片的两种触觉功能“力反馈”与“触感”组合起来,未来的发展前景如何呢?  <提高汽车驾驶的安全性>  目前,汽车仪表盘的操作开关,大都处于物理开关被触控面板取代的趋势。向触控面板转变,不仅汽车导航仪,音响和空调等操作功能也能集中到一处,优点是可以提高可操作性和可设计性。  不过也有缺点,就是与物理开关不同,无法瞬间辨别按钮的位置和操作感。叠层压电振动片既可消除这一缺点,还能进一步发挥触控面板的优点。  在触控面板中装入叠层压电振动片,可以通过力反馈识别按钮的操作感。而且只要给每个按钮赋予不同的触感,即便手摸也能识别按钮操作感。  ▲在触控面板上也能准确进行按钮操作(示意图)  <家电产品的扁平化设计趋势>  而且家电产品也跟汽车一样,只要使用装有叠层压电振动片的触控面板,就能提高可设计性和功能性。  微波炉和洗衣机主要采用物理开关。一方面需要增加按钮满足各种菜单功能,另一方面需要追求主体的小型化和可设计性,无法增加按钮数量,面临两难困境。  于是,像汽车的仪表盘一样,配置再现触觉功能的触控面板,即可实现扁平化设计也能提高功能,有望诞生更加时尚的产品。并且,提高触感技术之后,也许还会诞生能够再现点字的“触觉点字触控面板”之类的通用设计产品。  ▲还能研发高自由度产品并提高可用性(示意图)  不断发展进步的叠层压电振动片,属于应用范围还有很大扩展空间的一项技术。  不仅可以实现物理开关的可操作性、在游戏中应用,还隐含着根据与各种产品的组合方式产生新解决方案的可能性。
关键词:
发布时间:2025-10-10 13:21 阅读量:262 继续阅读>>
芯片的分类以及IC<span style='color:red'>设计</span>的基本概念介绍
  什么是芯片?  “芯片”(Chip)是“集成电路”(Integrated Circuit, IC)的俗称,是一种微型化的电子器件。它将大量的晶体管、电阻、电容、电感等电子元器件以及它们之间的连接线路,通过半导体制造工艺(主要是光刻技术),集成在一块微小的半导体材料(通常是硅,Silicon)基片上,形成一个完整的、具有特定功能的电路系统。  ▌核心材料  硅(Silicon)。硅是一种半导体材料,其导电性介于导体和绝缘体之间,可以通过掺杂等方式精确控制其电学特性。  ▌制造过程  在晶圆(Wafer,即一大片圆形的硅片)上,通过复杂的光刻、刻蚀、离子注入、薄膜沉积等数百道工序,将电路图形一层一层地“雕刻”上去。  ▌最终形态  制造完成后,晶圆被切割成一个个独立的小方块,这就是裸芯片(Die)。裸芯片再经过封装(Package),加上引脚和保护外壳,就成为了我们通常看到的、可以焊接到电路板上的芯片。  ▌简单比喻  可以把芯片想象成一个“微型城市”。硅片是土地,晶体管是城市里的“开关”或“门卫”,负责处理信息(开/关,1/0);导线是城市的“道路”,连接各个区域;整个集成电路就是这个城市的“规划图”,规定了所有建筑(元器件)和道路(连接)的布局,使其能协同工作。  芯片的分类  ▌按功能分类  数字芯片 (Digital IC):  特点:处理离散的数字信号(0和1)。逻辑清晰,抗干扰能力强,易于大规模集成。  代表:  微处理器 (Microprocessor, MPU,GPU,CPU等)  计算机、手机等设备的“大脑”,执行指令和处理数据(如Intel CPU, Apple M系列芯片)。  微控制器 (Microcontroller, MCU)  集成了处理器、内存、I/O接口等功能的“单片机”,常用于嵌入式系统(如家电、汽车电子)。  存储器 (Memory)  用于存储数据和程序。  逻辑门电路/可编程逻辑器件 (PLD)  如FPGA(现场可编程门阵列)、CPLD(复杂可编程逻辑器件),用户可以自行编程实现特定逻辑功能。  RAM (随机存取存储器)  如DRAM(动态RAM,主内存)、SRAM(静态RAM,高速缓存),断电后数据丢失。  ROM (只读存储器)  如Flash(闪存,U盘、SSD、手机存储)、EEPROM,断电后数据不丢失。  模拟芯片 (Analog IC):  放大器 (Amplifier)  如运算放大器(Op-Amp),用于放大微弱信号。  电源管理芯片 (Power Management IC, PMIC)  负责电压转换(升压/降压)、稳压、充电管理、电源分配等(手机、电脑中常见)。  数据转换器 (Data Converter)  如ADC(模数转换器,将模拟信号转为数字信号)、DAC(数模转换器,将数字信号转为模拟信号)。  射频芯片 (RF IC)  处理高频无线信号,用于通信(如手机、Wi-Fi、蓝牙模块)。  特点:处理连续变化的模拟信号(如电压、电流、温度、声音)。设计难度高,对噪声和干扰敏感。  混合信号芯片 (Mixed-Signal IC):  特点:在同一芯片上同时集成了数字电路和模拟电路。现代芯片大多是混合信号芯片。  代表:很多传感器接口芯片、通信芯片(如基带处理器)、SoC(见下文)。  ▌按集成度分类  SSI (Small-Scale Integration, 小规模集成电路)  :集成几十个晶体管(如简单的逻辑门)。  MSI (Medium-Scale Integration, 中规模集成电路)  :集成几百个晶体管(如计数器、译码器)。  LSI (Large-Scale Integration, 大规模集成电路)  :集成几千到几万个晶体管(如早期的微处理器、存储器)。  VLSI (Very Large-Scale Integration, 超大规模集成电路)  :集成几十万到几百万个晶体管(现代大多数芯片都属于此范畴)。  ULSI (Ultra Large-Scale Integration, 特大规模集成电路)  :集成上千万甚至数十亿个晶体管(如现代高性能CPU、GPU)。  ▌按应用领域分类  通用芯片  设计用于广泛的应用场景,如CPU、GPU、标准存储器。  专用集成电路 (ASIC - Application-Specific Integrated Circuit)  为特定应用或客户定制设计的芯片,性能和功耗优化,但开发成本高。  系统级芯片 (SoC - System on Chip)  将一个完整系统的大部分甚至全部功能(如CPU、GPU、内存控制器、DSP、I/O接口、射频模块等)集成在单一芯片上。这是现代电子设备(尤其是移动设备)的核心,如手机的主控芯片(如高通骁龙、苹果A系列)。  IC设计的基本概念  IC设计是创造芯片的“蓝图”和“规划”的过程,是一个高度复杂、多学科交叉的工程。这里主要介绍数字IC的设计,分为两大阶段:  ▌前端设计 (Front-End Design)  专注于功能的定义、验证和逻辑实现。  规格定义 (Specification)  明确芯片需要实现的功能、性能指标(速度、功耗)、接口标准等。  架构设计 (Architecture Design)  设计芯片的整体结构,如采用何种处理器核心、总线结构、存储层次等。  RTL设计 (Register-Transfer Level Design):  使用硬件描述语言(HDL),如Verilog或VHDL,编写代码来描述芯片的行为和数据在寄存器之间流动的方式。这是前端设计的核心,将功能需求转化为可综合的逻辑描述。  功能验证 (Functional Verification):  通过仿真(Simulation)等手段,确保RTL代码在各种输入条件下都能正确实现预期功能。  这是设计过程中耗时最长、成本最高的环节之一,目标是“把错都找出来”。  逻辑综合 (Logic Synthesis):  使用EDA(Electronic Design Automation,电子设计自动化)工具,将RTL代码自动转换为由标准单元库(如与门、或门、触发器等)构成的门级网表(Netlist)。这个过程会考虑时序、面积和功耗的约束。  ▌后端设计 (Back-End Design)  专注于物理实现,将逻辑设计转化为可以在晶圆上制造的物理版图。  物理实现 (Physical Implementation):  布局 (Placement)  将门级网表中的所有标准单元在芯片版图上进行物理摆放。  布线 (Routing)  根据网表连接关系,在布局好的单元之间铺设金属导线。  静态时序分析 (Static Timing Analysis, STA)  在不进行仿真的情况下,分析电路中所有可能的时序路径,确保信号能在时钟周期内稳定传输,满足建立时间(Setup Time)和保持时间(Hold Time)的要求。  物理验证 (Physical Verification):  设计规则检查 (Design Rule Check, DRC)  确保版图符合晶圆厂的制造工艺规则(如最小线宽、最小间距)。  版图与电路图一致性检查 (Layout vs. Schematic, LVS)  确保最终的物理版图与原始的门级网表在电气连接上完全一致。  电气规则检查 (Electrical Rule Check, ERC)  检查版图中的电气连接是否正确(如避免悬空引脚)。  寄生参数提取 (Parasitic Extraction)  提取布线产生的寄生电阻、电容等参数,用于更精确的时序和功耗分析。  最终交付  生成符合晶圆厂要求的GDSII或OASIS格式的版图文件,交付给晶圆厂进行制造。
关键词:
发布时间:2025-10-10 09:59 阅读量:403 继续阅读>>
瑞萨电子推出三款电感式位置传感器IC及网页版线圈<span style='color:red'>设计</span>工具,拓展工业传感产品组合
  2025年10月9日,全球半导体解决方案供应商瑞萨电子(TSE:6723)宣布推出全新无磁电感式位置传感器(IPS)IC产品系列,支持各类定制线圈设计,可广泛应用于机器人、医疗健康、智能建筑、家用电器及电机换向等工业应用场景。全新发布的RAA2P3226、RAA2P3200及RAA2P4200传感器IC具备高分辨率、高精度与高可靠性,是传统磁编码器/光学编码器的完美替代方案——传统编码器往往成本高昂,且需频繁维护。此外,瑞萨还同步推出一款网页版线圈设计工具,助力客户轻松创建定制化线圈方案,满足多样化方案需求。  基于电感式线圈传感器技术,瑞萨IPS产品采用简易金属标靶与双线圈/单线圈配置,可检测旋转、线性或弧形位置。瑞萨电感式位置传感器IC即使在高温(-40至125°C)、粉尘、潮湿、机械振动及电磁干扰等恶劣环境下仍能保持稳定运行;此外,电感式原理决定了传感器不受杂散磁场影响,且无需维护。得益于产品的高性能,耐用性与低维护成本,使其成为电机控制、执行器、阀门、机器人及基础设施等对可靠性和长期性能/寿命有严苛要求应用领域的理想选择。  三款产品均具备高精度位置检测能力,精度优于电周期的0.1%。其中RAA2P3226和RAA2P3200最高可支持600K RPM(电气转速),传播延迟低于100纳秒,这对高速电机应用至关重要。高端型号RAA2P3226支持双线圈(2路位置信息),具备19位分辨率和>0.01°绝对精度,满足工业电机/机器人应用的高精度需求。RAA2P4200专为医疗设备、动力工具等低速应用设计;RAA2P3200则针对高速电机换向应用设计。三款产品均内置自动校准与线性化功能,可简化系统并提升系统级性能。  除上述三款产品外,瑞萨还将推出车规级IPS产品RAA2P452x和RAA2P4500,预计将于今年晚些时候上市。双通道RAA2P452x与瑞萨微控制器(MCU)搭配使用时,可助力客户实现ASIL D安全等级。该车规级解决方案为低速车身控制和底盘系统提供经济高效的选择,同时确保品质不变。  基于电感式位置传感器的设计通常涉及集成PCB、无源元件、IC,以及安装在运动部件上的金属标靶。其中,主要设计难点在于外部传感元件,如发射和接收线圈,必须精确配置以实现高精度,并需针对系统的机械与环境要求进行定制。瑞萨推出的网页版电感式位置传感器线圈优化工具通过自动化线圈布局、仿真和调谐,有效解决这一难题,显著降低开发人员的学习门槛。借助该工具,工程师还能获得准确的性能预估,并通过优化线圈布局克服制造限制。  Leopold Beer, Vice President of Sensors Division at Renesas表示:“我们新推出的网页版线圈设计工具,将为电感式位置传感技术带来颠覆性变革。过去,开发人员在使用电感式位置传感器时,必须依赖芯片供应商的专业技术支持;如今,我们彻底打破这一障碍。这款直观易用的工具支持开发人员完全自定义感应线圈,并能够自动进行精细调校,从而在系统层面实现高精度和高稳定性。这不仅大幅降低行业准入门槛,也使更多客户——无论专业水平如何——都能自信地将电感式位置传感技术集成到设计中。”  RAA2P3226、RAA2P3200和RAA2P4200的关键特性  RAA2P3226  双线圈IPS技术,适用于电感式机器人关节、AGV物流小车、工业机器人/协作机器人,及各种电机控制  输出接口:UART、ABI、步进-方向、I²C  最高19位分辨率,0.01°绝对精度(集成游标功能)  自动增益控制(AGC)补偿气隙变化  16点线性化功能提升精度  启动时提供真实绝对位置信息(true power on)  支持旋转、弧形,及线性位置检测  工业级温度范围:-40°C至125°C  供电电压:3.0V/5.5V  RAA2P3200  高速低延迟IPS,适用于电机换向、电动自行车、工业机器人/协作机器人,及各种电机控制  输出接口:SPI、UART、ABI、UVW,或步进-方向  自动增益控制(AGC)补偿气隙变化  16点线性化功能提升精度  支持旋转、弧形,及线性位置检测  工业级温度范围:-40°C至125°C  供电电压:3.0V/5.5V  过压、反极性及短路保护  RAA2P4200  单线圈设计,适用于低速服务机器人、动力工具,及医疗应用  输出接口:Anolog、PWM、I²C  自动增益控制(AGC)补偿气隙变化  16点线性化功能提升精度  支持旋转轴向/非轴向、弧形,及线性位置检测  工业级温度范围:-40°C至125°C  供电电压:3.0V/5.5V  过压、反极性及短路保护  可替代ZMID4200  成功产品组合  瑞萨将RAA2P3226与其它兼容设备相结合,开发出两款“成功产品组合”:微型BLDC伺服和唱盘系统。这些“成功产品组合”基于相互兼容且可无缝协作的产品,具备经技术验证的系统架构,带来优化的低风险设计,以加快产品上市速度。瑞萨现已基于其产品阵容中的各类产品,推出超过400款“成功产品组合”,使客户能够加速设计过程,更快地将产品推向市场。
关键词:
发布时间:2025-10-10 09:50 阅读量:367 继续阅读>>

跳转至

/ 20

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码