高温IC<span style='color:red'>设计</span>必懂基础知识:高温<span style='color:red'>设计</span>的优势
  随着技术的飞速发展,商业、工业及汽车等领域对耐高温集成电路(IC)的需求持续攀升‌。高温环境会严重制约集成电路的性能、可靠性和安全性,亟需通过创新技术手段攻克相关技术难题‌。  这份白皮书致力于探讨高温对集成电路的影响,并提供适用于高功率的设计技术以应对这些挑战。本文将介绍高温设计的优势。  高温设计的优势  能够在高温下工作的集成电路具有多种优势。它们可以在汽车和航空航天等环境温度超过 150°C 的苛刻环境中可靠运行。这些设计通常非常稳健,包括温度保护电路,不易发生热失控和其他温度引起的故障,从而提高了系统的整体可靠性。通过耐受更高的温度,这些电路可以减少或消除对复杂冷却系统的需求,从而提供更简单、更具成本效益的解决方案。  ▷热管理  热管理对电子系统的设计和运行至关重要,可确保性能和可靠性。可利用散热器、液体冷却和改善空气流通等方法加强散热来降低结温。然而,这些方法也会增加电子模块的重量、尺寸和成本。  在大功率应用中,如功率开关和电动引擎等部件需要主动冷却。使用标温较高的冷却剂可以减少对大型散热器的需求,从而提高效率,但同时也要求元件能够承受更高的温度。碳化硅(SiC)功率开关适用于这些条件。在高温条件下工作并靠近功率晶体管安装的预驱动器是必不可少的,尤其是在汽车应用中,因为它们可以共享发动机冷却回路。无需特殊冷却即可在较高环境温度下工作的电路在各行各业都具有巨大的潜力。  电源管理对于传感器等低功耗应用也至关重要,尽管这些应用的功率不高,但热管理仍然具有挑战性。这是因为传感器尺寸超小、塑料外壳、无法添加散热片等因素导致散热不佳。额外的热管理会大大增加电子模块的成本、尺寸和重量。在这种情况下,从裸片到环境的热阻可达每瓦几十到几百摄氏度。驱动传感器执行器和处理传感器数据可能需要一定的功率,这会使裸片温度比环境温度高出几十摄氏度。这就需要能够承受高温的 IC 来实现没有这些热管理措施的应用。  另一个例子是由汽车电池直接供电的车用 IC。这可能是 12V 电池,或越来越常见的 48V 电池。在电路内部,IC 信号处理的电压可能仅需 1.2V,而从汽车电池到 IC 的线性稳压器消耗了大部分功耗。对于小负载来说,增加一个带有外部线圈的 DC-DC 转换器以提高效率既不实际也不经济。如果线性稳压器可以在高温下工作,则能够节省模块的成本和重量。  ▷过温保护  过温保护或热关断(Thermal Shutdown,TSD)对集成电路至关重要,可防止 IC 及其外部元件损坏,确保可靠性和安全性。环境温度过高、功耗过大、热管理不善或故障导致过载等因素都可能触发过温保护。当 IC 的结温超过预设阈值时,热关断机制就会启动,自动关闭 IC 的高功耗部分或整个芯片,以防止温度进一步升高及造成损坏。  一旦 IC 冷却到安全温度,它可以自动重新启动之前关闭的部分或整个 IC,在确保保护的同时最大限度地减少停机时间。这种机制对于维持 IC 的可靠性和使用寿命至关重要,可保护 IC 免受外部故障、过载或温度波动的影响。  有功能安全要求的产品也需要 TSD。也可使用具有功率降额功能的热监测或热预警。  TSD 应当保护 IC 免受热失控的影响,以形成一个正反馈。循环热失控发生在 IC 产生的热量超过其散热能力时,导致温度不可控地上升。高温会增加结和亚阈值泄漏,降低 MOS 晶体管的性能,并提高功率耗散。  如果缺乏 TSD 的保护,这一循环将持续到 IC 过热,可能导致故障、寿命缩短或安全隐患,包括火灾或爆炸。  TSD 级别的设置通常略高于最高工作温度,以便偶尔出现温度偏差时不会造成不必要的关机,但也要足够低,以便有效控制和关闭功率耗散部分。例如,如果最高工作温度为 165°C,考虑到 TSD 电路的制造容差,TSD 级别可设置在 170°C 至 185°C 之间。正确设置这一阈值对于平衡电子设计中的性能和安全性至关重要。  TSD 电路及其所有由该机制控制的相关模块必须设计为能够在最大 TSD 温度以及额外的安全裕度范围内可靠工作。这个安全裕度考虑了芯片上的温度梯度,即功率器件与温度传感器之间的温差。根据布局的不同以及使用的功率器件和传感器的数量,传感器可以放置在功率器件内部、旁边或更远的位置。此外,裕量还考虑了从温度上升到传感器检测到过热并关闭受影响的功率晶体管之间的延迟所导致的温度上升。这确保了即使在极端过热情况下,保护功能仍然能够保持有效运作。因此,TSD 电路必须在比 IC 其余部分更高的温度下保持工作状态,即超过最大工作结温。图 1. 保护电路的工作温度范围  ▷功耗 - 性能 - 面积  对 IC 进行优化,需要在功耗、性能和面积(PPA)这三个指标之间做出权衡。例如,提高性能会导致更高的功耗或更大的尺寸。相反,降低功耗可能会限制性能或需要更多的面积来添加节能元器件。提高最大工作温度可以扩大功耗空间,从而为性能提升或面积优化提供更多余地。  设计能在更高温度下可靠工作的 IC 实际上是一种性能的提升,因为它延长了使用寿命并降低了故障率。减少对大量冷却解决方案的需求可以降低系统的整体成本、复杂性和重量,从而实现更加紧凑和经济高效的设计。  高温工作能力使得在功耗、性能和面积之间进行的权衡更容易,同时也有助于提升整体的 PPA(功耗 - 性能 - 面积)评分。
关键词:
发布时间:2025-06-05 14:14 阅读量:256 继续阅读>>
上海雷卯电子EMC <span style='color:red'>设计</span>避坑指南:四不口诀
  你的产品明明设计得很好,为什么一做EMC测试就失败?上海雷卯电子教大家4个超实用的EMC设计技巧四不口诀,帮你避开常见的坑!  准则1 让电流“走捷径”,不绕远路  核心逻辑:高频电流走 “电感最小路径”,环路越大→辐射越强!  雷卯实验室关键知识点:  · 信号电流必成环路,回流路径紧贴流出路径  · 低频(kHz 级)走 “电阻最小路径”,回流可能分散;高频(MHz 级)走 “电感最小路径”,回流紧贴主线  · 设计技巧:高速信号与回流平面紧邻,缩短信号层与地平面间距  准则2 不要分割信号返回平面  雷卯 EMC 工程师的安全经验法则是:为所有信号电流提供一个完整的返回平面。若某低频信号易受干扰或可能干扰电路板上的电路,应使用单独层的走线将其电流回流至源端,而非分割平面。随意开槽 / 分割地平面,导致回流路径突变→EMI 激增!  例外情况:仅当低频敏感信号需隔离时(如音频电源),可采用独立回流走线,但需满足:  1. 独立层单独回流,不与高频平面交叉  2. 可咨询雷EMC专家,避免照搬案例  警示:99% 场景下,完整平面是最优解!  准则3 不要在连接器之间布置高速电路  在雷卯实验室评估过的电路板设计中,这是最常见的问题之一。许多本可轻松满足EMC要求(无需额外成本或精力)的简单设计,最终却因违反这一规则而不得不增加大量屏蔽和滤波措施。  为何连接器的位置如此重要?在几百兆赫兹以下的频率,波长可达米级或更长,印刷电路板本身的“天线”因电尺寸小而效率低,但连接到电路板的电缆或其他设备却可能成为高效天线。  信号电流在走线上流动并通过完整平面回流时,平面上任意两点的电压差通常与平面内的电流成正比。当所有连接器沿电路板一侧排列时,它们之间的电压差可忽略不计;但如果连接器之间布置了高速电路,连接器之间可能产生几毫伏或更高的电位差,这些电压会驱动电流流入连接的电缆,导致产品超出辐射发射要求。  准则4 不盲目追求最快边沿,控制好信号转换时间  核心逻辑:高频电流走 “电感最小路径”,环路越大→辐射越强!  雷卯推荐控制手段对比表:  推荐黄金比例:转换时间≈20% 位周期(如 100MHz 时钟,边沿控制在 2ns 以内)  总结 四不口诀速记表
关键词:
发布时间:2025-05-30 10:33 阅读量:272 继续阅读>>
恩智浦MR-VMU-RT1176解决方案简化移动机器人<span style='color:red'>设计</span>
  恩智浦的MR-VMU-RT1176是一款紧凑型、一体式车辆管理单元(VMU)。 该器件搭载i.MX RT1176跨界MCU,集成双核Arm® Cortex®-M7/M4处理器,并配备全面的传感器套件与丰富的连接选项,能够显著加速工程师构建下一代系统的进程。  移动机器人设计人员面临的挑战  移动机器人系统的设计极具复杂性,工程师需在一个系统内平衡实时控制、传感器融合及高速通信。传统设计需要集成多个分立式组件,如微控制器(MCU)、惯性测量单元(IMU)、全球导航卫星系统(GNSS)模块及网络接口,导致架构分散、繁琐,还延长了开发周期。  在移动机器人系统的设计过程中,工程师需应对多重挑战。其中实时处理是最严苛的环节之一,控制环路、传感器融合及自主决策均要求低延迟执行。许多MCU在高计算性能与实时约束之间难以取得平衡,工程师往往需要整合多个处理器或外部加速器,这进一步增加了复杂性与开发难度。  集成是另一个考虑要素,移动机器人要求确保处理单元、IMU、GNSS模块、电机控制器和网络接口的精准协调。然而,在传统设计中,工程师需要手动集成和同步这些组件,这不仅增加了开发时间,还可能带来不兼容的风险。  可靠的通信也非常重要。VMU必须以非常低延迟的传输传感器数据与执行器指令,以确保稳定、可预测的运动表现。然而,许多系统仍依赖传统协议,缺乏对CAN FD或汽车以太网等稳健、低延迟网络解决方案的支持,限制了数据传输效率与实时性。  最后,工程师广泛依赖PX4、Zephyr RTOS和Cognipilot等开源生态合作体系的软件,这些合作体系为实时控制提供必要的中间件和框架。然而,将这些软件与定制硬件配置无缝集成通常需要大量的开发工作。  借助MR-VMU-RT1176优化移动机器人  MR-VMU-RT1176提供紧凑的模块化解决方案,高效应对上述挑战。  MR-VMU-RT1176是一款紧凑、轻便的车辆管理单元解决方案,专为移动机器人设计。  处理能力  MR-VMU-RT1176基于i.MX RT1176跨界MCU构建,专为满足移动机器人严苛的计算需求而设计。 它采用双核架构,其中Cortex-M7(1GHz)用于控制环路、传感器融合及人工智能推理等高性能实时任务,而Cortex-M4(400MHz)则高效地管理后台处理,减轻主核的负担。 此外,该系统配备64MB外部闪存与2MB RAM,确保固件执行及实时数据处理的充足存储空间。MR-VMU-RT1176结构框图  全面的传感器套件  MR-VMU-RT1176集成了一套全面的传感器套件,可实现机器人系统的高精度运动跟踪与环境感知。该套件包括:  BMI088 6轴IMU,用于精确运动传感  BMM150和IST8310磁力计,用于航向与方位估计  两个BMP388气压计,用于高度和压力传感  两个ICM-42688 6轴IMU,用于增强运动跟踪的冗余与精度  其中一半传感器集成于内部连接的IMU板,使工程师能够轻松替换传感器,以适应未来的系统升级需求。  连接和接口选项  工程师需要灵活的通信选项,以便将VMU与电机、传感器及网络模块高效集成。MR-VMU-RT1176提供:  USB-C 2.0连接器和JST-GH引脚接头,用于高速数据传输  多个UART、I2C和SPI端口,用于连接外部外设  12路PWM输出,可直接控制执行器、伺服系统及电机  具有信号提升能力(SIC)的三重CAN-FD  100Base-T1汽车以太网,支持高带宽数据交换  RC输入与SBUS兼容接收器兼容,用于远程控制  由于这些连接器均遵循Dronecode标准,工程师能够轻松访问庞大的即插即用组件生态合作体系,这些组件能够与MR-VMU-RT1176搭配使用。  开发人员体验与软件生态合作体系  MR-VMU-RT1176具备高度兼容性,能够与开源实时操作系统及机器人框架轻松集成。 例如,它支持Zephyr RTOS,这是一个专为实时嵌入式应用设计的轻量级模块化系统。此外,该系统支持用于自主机器人的Cognipilot,它提供了一个基于Zephyr的自动驾驶平台。该单元还运行NuttX RTOS,这是一款符合POSIX标准的操作系统,以其强大的实时处理能力而闻名。此外,它还支持PX4 ,这是一款广泛用于无人机和移动机器人的飞行控制软件。  值得注意的是,PX4由QGroundControl补充。QGroundControl是一款用于任务规划、GPS航路点管理、遥测和测绘的地面站软件。该软件可在笔记本电脑、Android设备和定制硬件上运行,使用户能够从几乎任何地点实现全面的系统控制。
关键词:
发布时间:2025-05-29 11:51 阅读量:261 继续阅读>>
高温IC<span style='color:red'>设计</span>必懂基础知识:高结温带来的5大挑战
  随着技术的飞速发展,商业、工业及汽车等领域对耐高温集成电路(IC)的需求持续攀升‌。高温环境会严重制约集成电路的性能、可靠性和安全性,亟需通过创新技术手段攻克相关技术难题‌。  这份白皮书致力于探讨高温对集成电路的影响,并提供适用于高功率的设计技术以应对这些挑战。第一篇文章介绍了工作温度,包括环境温度和结温等。本文将继续介绍高结温带来的挑战。  高结温带来的挑战  半导体器件在较高温度下工作会降低电路性能,缩短使用寿命。对于硅基半导体而言,晶体管参数会随着温度的升高而下降,由于本征载流子密度的影响,最高极限会低于 300℃。依靠选择性掺杂的器件可能会失效或性能不佳。  影响 IC 在高温下工作的主要技术挑战包括:  泄漏电流增加  MOS 晶体管阈值电压降低  载流子迁移率降低  提高闩锁效应(Latch-Up)敏感性  加速损耗机制  对封装和接合可靠性的挑战  要设计出能够在高温下工作的 IC,了解高温下面临的挑战至关重要。下文将探讨 IC 设计面临的挑战。  1.泄漏电流增加  CMOS 电路中泄漏电流的增加主要是由半导体 PN 结泄漏和亚阈值沟道泄漏的增加引起的。  ▷反向偏置 PN 结泄漏  在较高温度下,半导体中热能的增加会导致更多电子 - 空穴对的产生,从而产生更高的泄露电流。结泄漏取决于掺杂水平,通常随温度呈指数增长。根据广泛使用的经验法则,温度每升高 10℃,结电流大约增加一倍。  二极管的泄漏电流由漂移电流和扩散电流组成:  其中, q 为电子的基本电荷, Aj 为结面积,ni 为本征载流子浓度,W 为耗尽区宽度,τ 为有效少数载流子寿命,L 为扩散长度,N 为中性区掺杂密度。  在中等温度下,泄漏电流主要由耗尽区中电子 - 空穴对产生的热引起。在高温下,泄漏电流主要由中性区产生的少数载流子引起。漂移电流与耗尽区宽度成正比,这意味着它与结电压的平方根成正比(在正常反向电压下),而扩散电流与结电压无关,并且与掺杂密度 N 成反比。掺杂水平越高,在温度高于约 150°C 时扩散泄漏越少。  泄漏电流的指数增加影响了大多数主动器件(如双极晶体管、MOS 晶体管、二极管)和一些被动器件(如扩散电容、电阻)。然而,由氧化物隔离的器件,例如多晶硅电阻、多晶硅二极管、ploy-poly 电容和 metal-metal 电容,并不受结泄漏的影响。结泄漏被认为是高温 bulk CMOS 电路中最严峻的挑战。  ▷亚阈值沟道泄漏  MOS 晶体管关闭时,栅极 - 源极电压 VGS 通常设置为零。由于漏极至源极电压 VDS 非零,因此漏极和源极之间会有小电流流过。当 Vgs 低于阈值电压 Vt 时,即在亚阈值或弱反型区,就会发生亚阈值泄漏。该区域的漏极源极电流并不为零,而是与 Vgs 呈指数关系,主要原因是少数载流子的扩散。  该电流在很大程度上取决于温度、工艺、晶体管尺寸和类型。短沟道晶体管的电流会增大,阈值电压较高的晶体管的电流会减小。亚阈值斜率因子 S 描述了晶体管从关断(低电流)切换到导通(高电流)的有效程度,定义为使漏极电流变化十倍所需改变的 VGS 的变化量:  其中,n 是亚阈值斜率系数(通常约为 1.5)。对于 n = 1,斜率因子为 60mV/10 倍,这意味着每低于阈值电压 Vt 60mV,漏极电流就会减少十倍。典型的 n = 1.5 意味着电流下降速度较慢,为 90mV/10 倍。为了能够有效地关闭 MOS 晶体管并减少亚阈值泄漏,栅极电压必须降到足够低于阈值电压的水平。  ▷栅极氧化层隧穿泄露  对于极薄的栅极氧化层(厚度低于约 3 纳米),必须考虑隧穿泄漏电流的影响。这种电流与温度有关,由多种机制引发。Fowler-Nordheim 遂穿是在高电场作用下,电子通过氧化层形成的三角形势垒时产生。随着有效势垒高度降低,隧道电流随温度升高而增大。较高的温度也会增强 trap-assisted 隧穿现象,即电子借助氧化层中的中间陷阱态通过。对于超薄氧化层,直接隧穿变得显著,由于电子热能的增加,隧穿概率也随之上升。  2.阈值电压降低  MOS 晶体管的阈值电压 Vt 与温度密切相关,通常随着温度的升高而线性降低。这是由于本征载流子浓度增加、半导体禁带变窄、半导体 - 氧化物界面的表面电位的变化以及载流子迁移率降低等因素造成的。温度升高导致的阈值电压降低会引起亚阈值漏电流呈指数增长。  3.载流子迁移率下降  载流子迁移率直接影响 MOS 晶体管的性能,其受晶格散射与杂质散射的影响。温度升高时,晶格振动(声子)加剧,导致电荷载流子的散射更加频繁,迁移率随之下降。此外,高温还会增加本征载流子浓度,引发更多的载流子 - 载流子散射,进一步降低迁移率。当温度从 25°C 升高到 200°C 时,载流子迁移率大约会减半。  载流子迁移率显著影响多个关键的 MOS 参数。载流子迁移率的下降会降低驱动电流,减少晶体管的开关速度和整体性能。更高的导通电阻会增加功率损耗并降低效率。较低的迁移率还会降低跨导,使亚阈值斜率变缓(增加亚阈值泄漏),降低载流子饱和速度(对于短沟道器件至关重要),并间接影响阈值电压。  4.提高闩锁效应敏感性  集成电路中各个二极管、晶体管和其他元件之间的隔离是通过反向偏置 P-N 结来实现的。在电路开发过程中,需采取预防措施以确保这些结在预期应用条件下始终可靠阻断。这些 P-N 结与其他相邻结形成 N-P-N 和 P-N-P 结构,从而产生寄生 NPN 或 PNP 晶体管,这些晶体管可能会被意外激活。  当寄生 PNP 和 NPN 双极晶体管相互作用,在电源轨和接地之间形成低阻抗路径时,CMOS IC 中就会出现闩锁效应(Latch-up)。这会形成一个具有正反馈的可控硅整流器(SCR),导致过大的电流流动,并可能造成永久性器件损坏。图 1 显示了标准 CMOS 逆变器的布局截面图。图中还包含寄生 NPN 和 PNP 晶体管。正常工作时,所有结均为反向偏置。图 1. 带标记的寄生双极晶体管逆变器截面图和寄生双极晶体管示意图  闩锁效应的激活主要取决于寄生 NPN 和 PNP 晶体管的 β 值,以及 N - 阱、P - 阱和衬底电阻。随着温度的升高,双极晶体管的直流电流增益(β)以及阱和衬底的电阻也会增加。  在高温条件下,闩锁效应灵敏度的增加也可以视为双极结型晶体管(BJT)阈值电压的降低,从而更容易在阱和衬底电阻上产生足以激活寄生双极晶体管的压降。基极 - 发射极电压随温度变化降低的幅度约为 -2mV/℃,当温度从 25℃升至 200℃时,基极 - 发射极电压降低 350mV。室温下的典型阈值电压为 0.7V,这意味着阈值电压大约减半。  5.加速损耗机制  Arrhenius 定律在可靠性工程中被广泛用于模拟温度对材料和元器件失效率的影响。  其中,R( T) 是速率常数,Ea 是活化能,k 是玻尔兹曼常数(8.617 · 10−5eV/K),T 为绝对温度(单位:开尔文)。通常,每升高10°C可靠性就会降低一半。  ▷经时击穿-TDDB  TDDB 是电子器件中的一种失效机制,其中介电材料(例如 MOS 晶体管中的栅氧化层)由于长时间暴露于电场下而随时间退化,导致泄漏电流增加。当电压促使高能电子流动时,在氧化层内部形成导电路径,同时产生陷阱和缺陷。当这些导电路径在氧化层中造成短路时,介电层就会失效。失效时间 TF 随着温度的升高而呈指数级减少。  ▷负 / 正偏置温度不稳定性 - NBTI / PBTI  NBTI 影响以负栅极 - 源极电压工作的 p 沟道 MOS 器件,而 PBTI 则影响处于积累区的 NMOS 晶体管。在栅极偏压下,缺陷和陷阱会增加,导致阈值电压升高,漏极电流和跨导减少。这种退化显示出对数时间依赖性和指数温度上升,在高于 125°C 时有部分恢复。  ▷电迁移  电迁移是指导体中的金属原子因电流流动而逐渐移位,形成空隙和小丘。因此,如果金属线中形成的空隙大到足以切断金属线,就会导致开路;如果这些凸起延伸得足够长以至于在受影响的金属与相邻的另一金属之间形成桥接,则可能导致短路。电迁移会随着电流密度和温度的升高而加快,尤其是在空隙形成后,会导致电流拥挤和局部发热。金属线发生故障的概率与温度成指数关系,与电流密度成平方关系,与导线长度成线性关系。铜互连器件可承受的电流密度约为铝的五倍,同时可靠性相似。  ▷热载流子退化  当沟道电子在 MOS 晶体管漏极附近的高电场中加速,会发生热载流子退化。在栅极氧化层中产生界面态、陷阱或空穴。它影响诸如阈值电压 VT、电流增益 β、导通电阻 RDS_ON 和亚阈值泄漏等参数。在较高温度下,平均自由程减少,降低了载流子获得的能量,使得热载流子退化在低温条件下更为显著。
关键词:
发布时间:2025-05-28 09:21 阅读量:294 继续阅读>>
一文了解嵌入式硬件<span style='color:red'>设计</span>的几个注意事项
  嵌入式设计是个庞大的工程,今天带您了解一下硬件电路设计方面的几个注意事项。首先,咱们了解下嵌入式的硬件构架。  我们知道,CPU是整个系统的灵魂,所有的外围配置都与其相关联,这也突出了嵌入式设计的一个特点硬件可剪裁。在做嵌入式硬件设计中,以下几点需要关注。  1. 电源的确定  电源对于嵌入式系统中的作用可以看做是空气对人体的作用,甚至更重要:人呼吸的空气中有氧气、二氧化碳和氮气等但是含量稳定,这就相当于电源系统中各种杂波,我们希望得到纯净和稳定符合要求的电源,但由于各种因素制约,只是我们的梦想。这个要关注两个方面:  a、电压  嵌入式系统需要各种量级的电源比如常见的5V、3.3V、1.8V等,为尽量减小电源的纹波,在嵌入式系统中使用LDO器件。如果采用DC-DC不仅个头大,其纹波也是一个很头疼的问题。  b、电流  嵌入式系统的正常运行不但需要稳定足够的电源,还要有足够的电流,因此在选择电源器件的时候需要考虑其负载,一般留有30%的余量。  如果是多层板,电源部分在layout的时候需电源分割,这时需要注意分割路径,尽量将一定量的电源放置在一起。如果是双面板,则走线宽度需要注意,在板子允许的情况下尽量加宽。合适的退耦电容尽量靠近电源管脚。  2. 晶振的确定  晶振相当于嵌入式系统的心脏,其稳定与否直接关系其运行状态和通讯性能。常见的振有无源晶振,有源晶振,首先要确定其振荡频率,其次要确定晶振类型。  a、无源晶振  其匹配电容和匹配电阻的选择,这部分一般依据参考手册。在单片机设计中,经常使用插件晶振配合瓷片电容。在ARM中,为了减少空间和便于布线,经常使用四角无源晶振配合贴片电容。 虽然我们对于固定晶振的匹配电路比较熟悉,但是为了达到万无一失,还是要看参考手册确定电容大小,是否需要匹配电阻等细节。  b、有源晶振 具有更好的更准确的时钟信号,但是相比之下,比无缘晶振价格高,因此这也是在硬件电路设计中需要关注的成本。在做电路板设计时需要注意晶振走线尽量靠近芯片,关键信号远离时钟走线。 在条件允许的情况下增加接地保护环。如果是多层板,也要讲关键信号远离晶振的走线。  3. 预留测试IO口  在嵌入式调试阶段,在管脚资源丰富的情况下,我通常预留一个IO口连接led或者喇叭,为下一步软件的编写做铺垫。在嵌入式系统运行过程中适当控制该IO接口,从而判断系统是否正常运行。  4. 外扩存储器  一个嵌入式系统如果有电源、晶振和CPU,那么这就是我们熟悉的最小系统。如果该嵌入式系统需要运行大点的操作系统,那么不但需要CPU具有MMU,CPU还需要外接SDRAM和NANDFLASH。  如果该cpu具有SDRAM和NANDFLASH控制器,那么在硬件设计上不用过多的考虑地址线的使用。如果没有相关的控制器,那么需要注意地址线的使用。  这部分在LAYOUT的时候是一个重点,究其原因就是要使相关信号线等长以确保信号的延时相等,时钟和DQS的差分信号线走线。在布线的时候各种布线技巧需要综合使用,例如与cpu对称分布,菊花链布线、T型布线,这都需要依据内存的个数多少来进行选择,一般来说个数越多,布线越复杂,但是知道其关键点,一切迎刃而解。  5. 功能接口  一个嵌入式系统最重要的就是通过各种接口来控制外围模块,达到设计者预设的目的。常用的接口有串口(可用来连接蓝牙,wifi和4G等模块),USB接口、网络接口、JTAG接口、音视频接口、HDMI接口等等。  由于这些接口与外部模块连接,做好电磁兼容设计是重要的一项工作。除此之外,在LAYOUT的时候注意差分线的使用。  6. 屏幕  这个功能之所以单独列出来,是由于其可有可无。如果一个嵌入式系统只是作为一个连接器连接外围设备模块,通过相关接口连接到电脑主机或者直接挂在网络上,那么屏幕就不需要了。  但是如果做出来的是一个消费类产品,与用户交互频繁,这就不得不唠叨几句。电容屏幕是嵌入式屏幕的主要部件,在电路设计中需要注意触屏连接线和显示屏连接线的布局。  在走线的过程中尽量短的靠近主控cpu,同时注意配对信号走差分线,RGB控制信号走等长。各种信号走线间距遵循3W规则,避免相互干扰。在屏幕的设计中,一定要确保功率和防止干扰,以防屏幕闪屏和花屏现象的出现。
发布时间:2025-05-14 09:13 阅读量:255 继续阅读>>
原理图和PCB<span style='color:red'>设计</span>常见错误速查清单
关键词:
发布时间:2025-05-13 10:46 阅读量:324 继续阅读>>
东芯半导体获选中国IC<span style='color:red'>设计</span>成就奖之年度最佳存储器!
关键词:
发布时间:2025-05-12 14:39 阅读量:299 继续阅读>>
上海贝岭股份有限公司荣获2025中国IC<span style='color:red'>设计</span>成就奖之年度杰出市场表现奖-工业!
14个经验技巧,教你学会电源<span style='color:red'>设计</span>!
  在电源设计领域中,经验的积累往往决定了产品的稳定性和可靠性。若是电子新人了解到一些实用的设计技巧,电源设计将事半功倍。下面将总结大佬的14条电源设计经验,以此提供参考和指导。  1电路设计经验  肖特基散热片连接:肖特基的散热片可以直接接到输出正极线路,从而省去绝缘垫和绝缘粒的使用。  RCD吸收元件选择:对于15W以上功率的电路,避免使用XX4007作为RCD吸收元件,因其速度慢、压降大,易导致高温失效。  输出滤波电容耐压:输出滤波电容的耐压值应至少符合1.2倍余量,以避免量产中的损坏现象。  卧式电容跳线布置:大电容或其他电容做成卧式时,底部如有跳线应放在负极电位,以节省成本并避免使用套管。  元件承认书描述:整流桥堆、二极管或肖特基等晶元大小元件,在承认书或BOM表中需明确描述,以管控供应商送货一致性。  Snubber电容选择:为处理异音问题,Snubber电容优先使用Mylar电容。  启动电阻保护:启动电阻如使用在整流前,需串联一颗几百K的电阻,以防电阻短路时损坏IC和MOSFET。  高压大电容并联:高压大电容并联一颗103P瓷片电容,对辐射30-60MHz有抑制作用,有助于EMI整改。  Y电容容量限制:使用的Y电容总容量不能超过222P,以避免漏电流影响,设计时需特别留意安规要求。  2电路调试经验  冷机启动电流:冷机时,PSR需1.15倍电流能开机,SSR需1.3倍电流能开机,以确保老化后启动良好。  异常测试:短路或开路某个元件后,如仍有输出电压,则需进行LPS测试,过流点不能超过8A。  3安规与测试经验  安规开壳样机准备:安规开壳样机所有可选插件元件需装上供拍照用,L、N线和DC线与PCB需点白胶固定。  EMS项目测试:进行EMS项目测试时,需测试至产品损坏为止,如ESD雷击等,并记录产品余量。  4变压器设计注意事项  变压器B值控制:反激拓扑结构中,变压器B值需小于3500高斯,以避免磁饱和导致的动作失控。需确认过流点、开机瞬间、输出短路、高温、高低压等状态下的磁饱和情况。
关键词:
发布时间:2025-04-21 16:20 阅读量:417 继续阅读>>
全面掌握芯片散热<span style='color:red'>设计</span>基本概念
  一般用符号θ来表示热阻。热阻的单位为℃/W。除非另有说明,热阻指热量在从热IC结点传导至环境空气时遇到的阻力。也可更具体地表示为θJA,即结至环境热阻。θJC和θCA是θ的两种其他形式,详见下文。  一般地,热阻θ等于100℃/W的器件在1W功耗下将表现出100℃的温差,该值在两个参照点之间测得。请注意,这是一种线性关系,因此,在该器件中,1 W的功耗将产生100℃的温差。再者对于热阻θ=95℃/W,因此,1.3 W的功耗将产生大约124℃结至环境温差。当然,预测内部温度时使用的正是这种温度的上升,其目的是判断设计的热可靠性。当环境温度为25°C时,允许约150℃的内部结温。实际上,多数环境温度都在25℃以上,因此,可以处理的功耗会稍低。  对于任意功耗P(单位:W),都可以用以下等式来计算有效温差(ΔT)(单位:℃):  ΔT = P ×θ  其中,θ为总适用热阻。下图总结了一些基本的热关系。       请注意,串行热阻(如右侧的两个热阻)模拟的是一个器件可能遇到的总热阻路径。因此,在计算时,总θ为两个热阻之和,即θJA = θJC + θCA。给定环境温度TA、P和θ,即可算出TJ。根据图中所示关系,要维持一个低的TJ,必须使θ或功耗(或者二者同时)较低。低ΔT是延长半导体寿命的关键,因为,低ΔT可以降低最大结温。  在IC中,一个温度参照点始终是器件的一个节点,即工作于给定封装中的芯片内部最热的点。其他相关参照点为TC(器件)或TA(周围空气)。结果又引出了前面提到的各个热阻,即θJC和θJA。  先来看看最简单的情况,θJA为在给定器件的结与环境空气之间测得的热阻。该热阻通常适用于小型、功耗相对较低的IC(如运算放大器),其功耗往往为1W或以下。一般而言,对于8引脚DIP塑封或者更优秀的SOIC封装,运算放大器以及其他小型器件的典型θJA值处于90-100°C/W水平。  需要明确的是,这些热阻在很大程度上取决于封装,因为不同的材料拥有不同水平的导热性。一般而言,导体的热阻类似于电阻,铜最好,其次是铝、钢等。因此,铜引脚架构封装具有最高的性能,即最低的θ。
关键词:
发布时间:2025-04-18 17:26 阅读量:442 继续阅读>>

跳转至

/ 16

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
型号 品牌 抢购
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码